dium. Each sample was analyzed twice with HPLC with a maximum error of $<1 \%$ in the determination of (area of 2-OMe)/(area of R) and (area of 4)/(area of R) and a maximum error of $<10 \%$ in the determination of (area of 3)/(area of R) and (area of 6)/(area of R).

The rate of disappearance of $h-2-\mathrm{Cl}$ was measured by withdrawing samples of the reaction solution and allowing the unreacted $h-2-\mathrm{Cl}$ to react with $25 \mathrm{vol} \%$ acetonitrile/water to form the corresponding allylic alcohols before carrying out the extraction procedure. ${ }^{7}$ Analyses were made by HPLC. Plots of \ln [(area of alcohols)/(area of R)] vs. time yielded the rate constant.

Measurement of Rearrangement Isotope Effect ($\boldsymbol{k}_{12}{ }^{\mathrm{H}} / \boldsymbol{k}_{12}{ }^{\mathrm{D}}$). To 100 mL of the buffered base solution was added $0.6 \mu \mathrm{~L}$ of 3 -methylindene (R). The same stock solution of base was used in the reactions of both $h-1-\mathrm{Cl}$ and $d-1-\mathrm{Cl}$. About 0.06 g of the substrate was weighed into a $25-\mathrm{mL}$ flask sealed with a tight TFE septum, and the reaction was initiated by filling the flask with prethermostated base solution. Four samples were withdrawn after 10% reaction and quenched by the extraction procedure described above. Trichloroethane solution ($230 \mu \mathrm{~L}$) was transferred after the second centrifugation and diluted with $500 \mu \mathrm{~L}$ of ethanol. The samples were analyzed 3-8 times with HPLC and the peaks of R and 4 were then greatly enlarged, so that the areas could be integrated with a desk computer equipped with a digitizer.

The isotope effect of the formation of the ether, 4 , is also the isotope effect on the rearrangement since the product compositions obtained from $h-2-\mathrm{Cl}$ and $d-2-\mathrm{Cl}$ were found to be constant and equal, within experimental error. $1 n$ an initial-rate experiment, the concentration of $1-\mathrm{Cl}$ was approximated with the average concentration at time zero and the sam-
pling time. Accordingly, the formation of 4 will be linear (eq 9). The

$$
\begin{equation*}
\frac{\Delta[4]}{\Delta t} \approx k_{14}\left([1-\mathrm{Cl}]_{0}+[1-\mathrm{Cl}]_{t}\right) / 2 \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\frac{k_{12}^{\mathrm{H}}}{k_{12}^{\mathrm{D}}}=\frac{k_{14}^{\mathrm{H}}}{k_{14}^{\mathrm{D}}}=\frac{\left(\frac{\text { area of }(h-4)}{\text { area of } \mathrm{R}}\right)}{\left(\frac{\text { area of } d-4}{\text { area of R }}\right)} \frac{\Delta t^{\mathrm{D}}}{\Delta t^{\mathrm{H}}} \frac{[d-1-\mathrm{Cl}]_{0}+[d-1-\mathrm{Cl}]_{t}^{\mathrm{D}}}{[h-1-\mathrm{Cl}]_{0}+[h-1-\mathrm{Cl}]_{t}^{\mathrm{H}}} \tag{10}
\end{equation*}
$$

isotope effect was calculated by employing eq 10 . The error in determining the area ratio of $h-4$ and R was estimated to $2 \sigma=3 \%$ and the error in area ratio of $d-4$ and R to $2 \sigma=10 \%$. Evaluation of the error in the rearrangement isotope effect was based on the average of maximum errors from five experiments.

1sotopic-Exchange Experiments. The extent of incorporation of protium into $d-1-\mathrm{Cl}$ was determined by ${ }^{1} \mathrm{H}$ NMR analysis $\left(100 \mathrm{MHz}, \mathrm{CCl}_{4}\right)$ of a sample from the reaction of $d-1-\mathrm{Cl}$ using the same concentration of substrate, base, and buffer as in the determination of the rearrangement isotope effect. The reaction solution (25 mL) was quenched after 52% reaction by shaking it vigorously with a mixture of 25 mL of 0.5 M aqueous sulfuric acid solution and 5 mL of carbon tetrachloride. The organic phase was washed with water until neutral and once with brine and then evaporated to 1 mL .

Registry No. $h-1-\mathrm{Cl}, 64909-94-0 ; h-2-\mathrm{Cl}, 98800-46-5$; deuterium, 7782-39-0.

The Octant Rule. 17. Front Octant Effects: Synthesis and Circular Dichroism of syn-($\left.1^{\prime} R\right)$-Spiro[cyclobutan-2-one-$1,2^{\prime}-\left(4^{\prime}(\right.$ a $)$-methyladamantane $\left.)\right]$ and $\operatorname{syn}-\left(1^{\prime} S\right)$ -Spiro[cyclobutan-2-one-1, 7^{\prime}-(2^{\prime}-exo-methylnorbornane)] ${ }^{1}$

David A. Lightner,* Tsung C. Chang, Daniel T. Hefelfinger, Dennis E. Jackman, W. M. Donald Wijekoon, and John W. Givens, III
Contribution from the Department of Chemistry, University of Nevada, Reno, Nevada 89557-0020. Received April 19, 1985

Abstract

Optically active ($1 R, 3 S$)-4(R)(a)-methyladamantan-2-one (3) has been synthesized and converted to the isomeric syn- (1) and anti-($1^{\prime} R$)-spiro[cyclobutan-2-one-1, $2^{\prime}-\left(4^{\prime}(a)\right.$-methyladamantane)] (2) by spiroannelation methods. Similarly, ($1 S, 4 R$)-exo-2(R)-methylbicyclo[2.2.1] heptan-7-one (15) was converted to syn-(1'S)-spiro[cyclobutan-2-one-1,7'-(2'-exomethylnorbornane)] (14). The ring skeletons of 1 and 14 are essentially symmetric, and all normal back octant (rule) perturbers cancel. The lone dissymmetric methyl group, however, lies in front of the carbonyl oxygen and is observed to control the sign and magnitude of the circular dichroism Cotton effect with a strong front octant contribution.

The octant rule ${ }^{2,3}$ for the $\mathrm{n} \rightarrow \pi^{*}$ transition of saturated alkyl ketones was formulated over 25 years ${ }^{4}$ ago and has since become one of the most important chirality rules for extracting stereochemical and conformational information from optically active ketones. The octant rule is derived from the local symmetry $\left(C_{2 v}\right)$

[^0]of the carbonyl group and a consideration of the relevant orbitals of the $\mathrm{n} \rightarrow \pi^{*}$ transition. The two well-defined carbonyl symmetry planes ($X Z$ and $Y Z$, Figure 1) divide all space about the $\mathrm{C}=0$ (C at origin) group into quadrants (hence a quadrant rule) and a third, ill-defined, non-symmetry-derived nodal surface further divides all space into octants (hence the octant rule). The shape of this third nodal surface was crudely approximated as a plane (A, Figure 1) bisecting the $\mathrm{C}=\mathrm{O}$ bond, and recently it has become more accurately pictured on the basis of theory ${ }^{3 a}$ and experiment ${ }^{3 b}$ as a convex surface (B , Figure 1) cutting behind the carbonyl carbon and bending outward in the $+Z$ direction. The octant occupied by a particular perturber determines the sign of its contribution to the rotatory strength of the $n \rightarrow \pi^{*}$ transition. Reflection of the perturber across either of the $X Z$ or $Y Z$ symmetry planes leads to a mirror image molecular fragment and hence one with an oppositely signed rotatory strength contribution. Since the third nodal surface does not follow from symmetry,

Flgure 1. Octant rule diagram for the ketone carbonyl $\mathrm{n} \rightarrow \pi^{*}$ transition. As originally stated (ref 2), the two carbonyl symmetry planes ($X Z$ and $Y Z$) divide all space into quadrants, and a third nodal surface, approximated by a plane (A) orthogonal to $X Z$ and $Y Z$ and bisecting the $\mathrm{C}=0$ bond, divides the quadrants into octants. The third nodal surface was subsequently determined to be better approximated by a convex surface (B), cutting behind the carbonyl carbon and bending outward in the $+Z$ direction (ref 3). Atoms lying in the symmetry planes and nodal surfaces make zero contribution to the circular dichroism; atoms lying in octants make contributions to the Cotton effect whose signs are shown to the right of the octant figure, for back octants (behind B) and front octants (in front of B).
"reflection" across it does not correspond to a mirror image situation; consequently, the weight given to a particular perturber in a front octant is not the same as for a like position in a back octant. The signs, however, are expected to change with reflection across the third nodal surface, and the signs for atoms such as $\mathrm{C}, \mathrm{H}, \mathrm{Cl}, \mathrm{Br}$, and I are given in Figure 1.

Despite the obvious utility of the octant rule, only the back octants had been verified experimentally ${ }^{2}$ until recently when the dissignate ${ }^{5}$ perturbers of certain anti-octant compounds were found to be just in front of the third nodal surface (B, Figure 1), rather than behind it (A, Figure 1). ${ }^{3,6}$ The experimental evidence on which the octant rule rests is largely and convincingly from numerous examples where the dissymmetric elements (the groups perturbing the carbonyl chromophore in a nonsymmetric way, e.g., the methyl group of 3(e)-methylcyclohexanone) are invaraible located behind the carbon of the carbonyl group (back octants), as viewed from oxygen toward carbon. There are extremely few examples in which dissymmetric perturbers are located in front of the carbonyl carbon or oxygen, and almost all the known rare compounds having such perturbers in front octants also have other perturbers nonsymmetrically located in back octants. The question of the existence of or need for front octants has not escaped attention, however, for it was quite obvious at an early stage in the development of the octant rule that some atoms would occasionally lie in front octants (e.g., in 1-oxo, 7-oxo-, and 11 oxosteroids), although the effects of atoms lying in back octants always appeared to dominate the sign of the Cotton effect. ${ }^{2}$ Examples of contributors entering front octants have been discussed by Djerassi and Klyne, ${ }^{7}$ but the cited examples also have back octant as well as front octant contributions and therefore did not clearly test the existence of front octants. More recently, the circular dichroism (CD) data from 7 -oxosteroids and de-D7 -oxosteroids were analyzed by difference methods, and the authors concluded in favor of the existence of front octants. ${ }^{8}$ At the same time, CD spectra of potentially cleaner examples, cisand trans-6-methylspiro[4.4]nonan-1-ones, supported the notion
(5) (a) Klyne, W.; Kirk, D. N. Telrahedron Lell. 1973, 1483-1486. (b) Kirk, D. N.; Klyne, W. J. Chem. Soc., Perkins Trans 2 1974, 1076-1103. (6) Lightner, D. A.; Jackman, D. E. J. Am. Chem. Soc. 1974, 96, 1938-1939 and references therein.
(7) Djerassi, C.; Klyne, W. J. Chem. Soc. 1963, 2390-2402.
(8) Kirk, D. N.; Klyne, W.; Mose, W. P. Tetrahedron Letl. 1972, 1315-1318.
of front octants, but the analysis was complicated by ring conformational changes. ${ }^{9}$

With the lack of unambiguous proof for the existence of front octants, the "octant" rule remained unproven, and a quadrant rule was discussed as an alternative chirality rule. ${ }^{10}$ In the quadrant rule, the third nodal surface (A or B, Figure 1) is deleted, and the quadrants are signed the same as for back octants. Subsequently, Bouman and Moscowitz ${ }^{11}$ showed, in a theoretical treatment using a limited basis set, that "quadrant" contributions were suppressed by assuming delocalized n orbitals and that the octant set gives larger contributions than the quadrant set. These authors favored an octant rule.
The seemingly unrelated problem of "anti-octant" effects emerged about this time. It focused on, but was not limited to, ${ }^{12}$ the 3-axial position of chair cyclohexanone. In 1966, Pao and Santry ${ }^{13}$ used a Gaussian orbital calculation to derive the octant rule for various methyl-substituted chair cyclohexanones. Their results agreed with the predictions of Moscowitz' original theoretical derivation of the octant rule ${ }^{14}$ for all methyl configurations except 3 -axial, ${ }^{15}$ as did later calculations using an extended Hückel treatment. ${ }^{16}$ At nearly the same time, Snatzke and co-workers ${ }^{17}$ published the first experimental verification that the 3 -axial position of chair cyclohexanone did not follow the classical octant rule. ${ }^{2}$ In particular, $(1 R, 3 S)-4(R)($ a $)$-methyladamantan-2-one (3) gave a weak, positive CD Cotton effect (CE) in ethanol or dioxane solvent, ${ }^{17 \mathrm{a}}$ in opposition to the octant rule prediction: a negative $C E$ for the methyl perturber in a lower left or upper right back octant (Figure 1). The significance of this surprising observation was clouded somewhat by the fact that a weak (-)-CE was observed for the same ketone in isooctane. ${ }^{18}$ However, adamantanones with other β-axial perturbers, e.g., $\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{N}_{3}, 7 \mathrm{7a}$, b and $\mathrm{SCN}, \mathrm{ONO}_{2}, \mathrm{OAc}, \mathrm{OCO}_{2} \mathrm{CH}_{3},{ }^{17 \mathrm{c}}$ exhibited "anti-octant" CD CEs which did not change sign. Other apparent "anti-octant" effects have been reported, ${ }^{36,6.12}$ but in many of these examples, the controlling dissymmetric perturber(s) apparently lies just in front of the third nodal surface (B, Figure 1), ${ }^{3}$ viz., in front octants and not back octants. A prime example of this is ketone 15, which shows a moderately strong (+)-CE in both hydrocarbon and polar solvents. ${ }^{3 \mathrm{~b}, 6}$
In this work, we present unequivocal evidence for front octants, where the lone dissymmetric perturber lies in front of the carbonyl oxygen-and thus in front of the third nodal surface of both the revised ${ }^{3}$ (B, Figure 1) and original (A, Figure 1) octant rule. These conditions are satisfied by $\operatorname{syn}-\left(1^{\prime} R\right)$-spiro[cyclobutan-2-one-1, $2^{\prime}-\left(4^{\prime}(a)\right.$-methyladamantane $\left.)\right](1)^{19}$ and syn-($\left.1^{\prime} S\right)$-spiro-[cyclobutan-2-one-1, 7^{\prime}-(2^{\prime}-exo-methylnorbornane)] (14), ${ }^{20}$ whose preparations and properties are discussed in the following.

Results and Discussion

Synthesis, Stereochemistry, and ${ }^{13} \mathrm{C}$ NMR. The key synthetic intermediate in the preparation of spiroadamantyl ketones 1 and

[^1]2 was ($1 R, 3 S$)-4(R)(a)-methyladamantan-2-one (3). To obtain

1

2

3

14

15
ketone 3, we modified the previously published stereospecific synthesis ${ }^{176}$ beginning with the preparation (Scheme I) of Meerwein's ester, ${ }^{21}$ an easily obtained bicyclo[3.3.1] nonane derivative which was recently shown to be in the completely enolized form. ${ }^{22}$ Meerwein's ester was smoothly hydrolyzed and decarboxylated to yield bicyclo[3.3.1]nonan-2,6-dione, from which the functionalized racemic adamantane-2,8-dione-2-carboxylic acid (4) was prepared via reaction of the bis-enamine with methyl dibromoacetate. Resolution of 4 to $\sim 100 \%$ enantiomeric excess (ee) of $\mathbf{4 b}$ was achieved in three crystallizations of its cinchonidine salt. Stereoselective thioketalization of the less sterically hindered ketone group of the methyl ester ($\mathbf{5 b}$) gave $\mathbf{6 b}$, which was smoothly desulfurized with $\mathrm{Ni}(\mathrm{R})$ followed by oxidation to give 7. Conversion of 7 to 3 involved protection of the ketone group as the dimethyl ketal followed by LiAlH_{4} reduction of the carbomethoxy group and deketalization to give 8 and then conversion of the hydroxymethyl group (of 8) to a bromomethyl group (9) using $\mathrm{Br}_{2}+$ triphenylphosphine followed by $\mathrm{Ni}(\mathrm{R})$ reduction.

We attempted to determine the enantiomeric excess (ee) of ketone 3 and its precursors 8 and 9 by use of ${ }^{1} \mathrm{H}$ NMR spectroscopy and the chiral shift reagent, tris[3-(trifluoromethyl-hydroxymethylene)-d-camphorato]europium(III), $\mathrm{Eu}(\mathrm{tfc})_{3}$. However, we could not separate the methyl doublets of racemic 3 or the hydroxymethyl and bromomethyl doublets of 8 and 9 . The ee of 3 was, nevertheless, determined in two ways, both involving the derived alcohol $\mathbf{1 0}$ produced stereospecifically by LiAlH_{4} reduction. (1) Whereas the CH_{3} signal of racemic alcohol $(\mathbf{1 0 a}+\mathbf{1 0 b})$ in the ${ }^{1} \mathrm{H}$ NMR spectrum moved and split into two signals (1.00:1.00 ratio) upon addition of the chiral shift reagent, $\mathrm{Eu}(\mathrm{tfc})_{3}$, the alcohol (10b) derived from 3 exhibited only one CH_{3} signal under the same conditions. (2) Mosher esters (from $(R)-(+)-\alpha$-methoxy- α-(trifluoromethyl)phenylacetic acid, (R) -$(+)$-MTPA $)^{23}$ of both racemic alcohol $(10 \mathrm{a}+10 \mathrm{~b})$ and that $(\mathbf{1 0 b})$ derived from 3 were prepared and examined by ${ }^{1} \mathrm{H}$ NMR (for OCH_{3}) and ${ }^{19} \mathrm{~F}$ NMR (for CF_{3}). In the ${ }^{1} \mathrm{H}$ NMR, the Mosher ester of racemic alcohol showed only one OCH_{3} signal which moved and split into two lines of equal intensity upon addition of $\mathrm{Eu}(\mathrm{fod})_{3}$. In the ${ }^{19} \mathrm{~F}$ NMR spectrum, the diastereomeric CF_{3} groups were split into two equal intensity lines ($\delta 35.12$ and 34.92 relative to CFCl_{3}) without addition of shift reagent. The Mosher ester of 10 b , derived from 3 , showed only one line (corresponding to the more deshielded signal of the Mosher ester of racemic alcohol) in the ${ }^{19} \mathrm{~F}$ NMR spectrum and one OCH_{3} signal in the ${ }^{1} \mathrm{H}$ NMR spectrum upon addition of $\mathrm{Eu}(\mathrm{fod})_{3}$. These data are in agreement with 3 , being optically pure ($>99 \%$ ee).

The absolute configuration of 3 was determined by using the LIS-NMR method ${ }^{23}$ on the Mosher ester of the alcohol (10b) derived from 3. With the Mosher ester of racemic alcohol for reference, we found that the more shielded CF_{3} resonance was faster moving upon addition of $\mathrm{Eu}(\text { fod })_{3}$-corresponding to the ester of 10a. Since the more deshielded CF_{3} signal corresponds to the $(R)-(+)$-MTPA ester of 10 b , the absolute configuration of $\mathbf{1 0 b}$ and its precursor (3) is assigned the $1 R, 3 S$ configuration. This LIS-NMR determination of absolute configuration is in full agreement with the absolute configuration assigned by circular dichroism. ${ }^{17}$

[^2]Before attempted transformation of $\mathbf{3}$ to $\mathbf{1}$ and 2, we explored Trost's spiroannelation methods ${ }^{25 a}$ with the parent, adamantanone. Adamantanone was smoothly and essentially completely converted to the crystalline spirocyclobutanone 11 by reaction during 24 h with diphenylsulfonium cyclopropylide ${ }^{25 a}$ generated at room temperature in situ in $\mathrm{Me}_{2} \mathrm{SO}$ by reaction of KOH with cyclopropyldiphenylsulfonium tetrafluoroborate, ${ }^{25 b}$ followed by acidic workup. The mechanism ${ }^{2 s_{a}}$ proceeds via acid-catalyzed rearrangement of the reactive oxaspiropentane intermediate $\mathbf{1 6}$. Reaction at higher temperatures led to destruction of the desired product, 11. Ketone 11 could also be prepared by an alternative two-step route involving (1) conversion of adamantanone to cy-clopropylidene-adamantane (12) in high yield with triphenylphosphonium cyclopropylide and then (2) reaction of 12 with m-chloroperbenzoic acid. The unstable oxaspiropentane (16) formed in (2) rearranges under mild acid catalysis to 11 , in quantitative yield.

Spiroannelation of $\beta(a)$-methyladamantanone (3) presented an important stereochemical consideration because the product spirocyclobutanone can have its carbonyl group oriented syn (1) or anti (2) with respect to the β-axial methyl group. The methyl group should, in fact, be expected to control the product stereochemistry, depending upon the choice of spiroannelation method. ${ }^{25 c}$ In the direct spiroannelation procedure with diphenylsulfonium cyclopropylide, we expected predominant attack of the ylide on the least hindered face of 3 , i.e., opposite to that bearing the β-axial CH_{3}, to give first the unstable oxaspiropentane 17 (with oxygen syn to CH_{3}). Since the oxaspiropentane is expected to rearrange stereoselectivity with retention of oxygen and methyl relative stereochemistry, ${ }^{25 a}$ the major product of 17 is expected to be the syn-spiro ketone 1. Less likely attack of sulfonium ylide on the more hindered carbonyl face should proceed via oxaspiropentane 18 (with oxygen anti to CH_{3}) to give mainly the anti-spiro ketone 2. In the indirect spiroannelation reaction sequence, the cyclopropylidene derivative 17 is prepared, isolated, and treated with m-chloroperbenzoic acid. In the epoxidation step, attack of the oxygen-delivering peracid should be sterically hindered on one face of the $\mathrm{C}=\mathrm{C}$ by the CH_{3} group, leading to preferential formation of oxaspiropentane 18 , which has its oxygen anti to CH_{3}. Again, stereoselective oxaspiropentane rearrangement with retention of the oxygen and CH_{3} relative stereochemistry ${ }^{25 a}$ should lead to the anti-spiro ketone 2 as the predominant product from 18.

Reaction of 3 with diphenylsulfonium cyclopropylide during 5 days at room temperature afforded a 29% yield of spiroannelated product, along with unreacted starting ketone. Shorter reaction times led to poorer conversion, and longer reaction times, e.g., 35 days, led to greater conversion of 3 but also rearrangement of product to uncharacterized substances. Elevated reaction temperatures at short reaction times led to consumption of 3 and destruction of spiroannelated products. The reaction is apparently slowed (relative to adamantanone itself) by steric hindrance of the β-axial methyl group, which generally limits attack of the ylide to only one carbonyl face and introduces an incipient 1,3-diaxial methyl-oxygen interaction as attack of the ylide leads to rehybridization from sp^{2} to sp^{3} at the carbonyl carbon. ${ }^{26}$ Insofar as we could determine, the product spirobutanone was homogeneous and was tentatively assigned structure 1 . This assignment was conclusively proved by reactions that converted 3 to both 1 and

[^3]
Scheme I

2. Thus, reaction of $\mathbf{3}$ with triphenylphosphonium cyclopropylide gave the cyclopropylidene derivative 17 , which was treated with m-chloroperbenzoic acid to afford a high yield of spiroannelated product. This proved to be a $3: 1$ mixture of spirocyclobutanones, with the minor product corresponding in GC retention time to that of the single spirocyclobutanone obtained (above) from the reaction of $\mathbf{3}$ with diphenylsulfonium cyclopropylide. According to the expected reaction stereochemistry, ${ }^{25 a, c}$ the minor product is assigned the syn stereochemistry (1) and the major product the anti stereochemistry (2). These assignments were confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy: the CH_{3} doublet of the minor isomer was more deshielded ${ }^{27}(\delta 1.10)$ than that ($\delta 1.07$) of the major isomer and also exhibited a larger LIS-NMR with Eu(dpm) ${ }_{3} .{ }^{25 \mathrm{c}}$ Consequently, we believe that reaction of 3 with diphenylsulfonium cyclopropylide gave only oxaspiropentane 17 , which rearranged stereospecifically to give only 1 . Epoxidation of 13 , however, probably gave predominantly 18 , but it is unclear whether 18 rearranges stereospecifically to 2 . In light of these findings, the stereospecific synthesis of $\mathbf{1 4}$ (the analogue of 1) was accomplished via reaction of diphenylsulfonium cyclopropylide with ketone $\mathbf{1 5}^{3 \mathrm{~b}, 6}$ (the analogue of 3).
The ${ }^{13} \mathrm{C}$ NMR assignments for spiro ketones $\mathbf{1 , 2}$, and $\mathbf{1 1}$ are given in Table I. The syn- CH_{3} group of 1 shows no unusual effects due to the close promixity of the $\mathrm{C}=\mathrm{O}$ oxygen. Both 1 and 2 show the expected γ-gauche effect ${ }^{28}$ on C - 10^{\prime} due to introduction of the axial CH_{3} group as well as the deshielding of $\mathrm{C}-3^{\prime}, \mathrm{C}-4^{\prime}$, and $\mathrm{C}-5^{\prime}$. Adamantyl carbons farther removed expectedly show minimal changes. The carbons of cyclobutanone have been assigned previously: ${ }^{29} \mathrm{C}_{1}, 208.2 ; \mathrm{C}_{2}, 47.8 ; \mathrm{C}_{3}, 9.9 \mathrm{ppm}$ downfield from $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ with the C_{3} resonance showing unusually large shielding. The effect of spirofusing the adamantane ring to the α-carbon $\left(\mathrm{C}_{1}\right)$ shifts C_{3} strongly downfield: δ for this carbon $\left(\mathrm{C}_{4}\right)$ in 11 is ~ 24. However, only a small deshielding effect on the carbonyl carbon can be seen.

Circular Dichroism and Molecular Geometry. The adamantane and norbornane skeletal systems are symmetric and are fairly rigid, with well-defined molecular geometry. Cyclobutanone is only moderately flexible. Microwave studies indicate a broad double minimum potential well for two (equivalent) slightly bent (4.6
(27) The CH_{3} group of 3 , however, lies in a shielding region of the $\mathrm{C}=\mathrm{O}$ group and exhibits a CH_{3} doublet at $\delta 0.95$. The equatorial CH_{3} epimer of 3 shows a CH_{3} doublet at $\delta 1.07$, but the axial CH_{3} shows a greater LIS-NMR with $\mathrm{Eu}(\mathrm{dpm})_{3}$.
(28) See, for example: Breitmaier, E. ${ }^{43}$ C NMR Spectroscopy"; Verlag Chemie: New York, 1978; pp 74-75
(29) Lambert, J. B.; Wharry, S. M.; Block, E.; Bazzi, A. A. J. Org. Chem. 1983, 48, 3982-3985.

Table I. Carbon-13 NMR Chemical Shift ${ }^{a}$ Assignments for Spiro Ketones

carbon	$\mathbf{1 1}$	$\mathbf{1}$	$\mathbf{2}$
1	$71.32(\mathrm{~s})$	$70.21(\mathrm{~s})$	$70.45(\mathrm{~s})$
2	$214.89(\mathrm{~s})$	$213.02(\mathrm{~s})$	$215.07(\mathrm{~s})$
3	$40.79(\mathrm{t})$	$42.28(\mathrm{t})$	$42.60(\mathrm{t})$
4	$24.23(\mathrm{t})$	$25.52(\mathrm{t})$	$25.81(\mathrm{t})$
I^{\prime}	$33.18(\mathrm{~d})$	$32.54(\mathrm{~d})$	$32.77(\mathrm{~d})$
2^{\prime}	$71.32(\mathrm{~s})$	$70.21(\mathrm{~s})$	$70.45(\mathrm{~s})$
3^{\prime}	$33.18(\mathrm{~d})$	$40.11(\mathrm{~d})$	$40.38(\mathrm{~d})$
4^{\prime}	$33.59(\mathrm{t})$	$38.72(\mathrm{~d})$	$39.97(\mathrm{~d})$
5^{\prime}	$26.86(\mathrm{~d})$	$33.88(\mathrm{~d})$	$34.12(\mathrm{~d})$
6^{\prime}	$37.10(\mathrm{t})$	$38.42(\mathrm{t})$	$38.68(\mathrm{t})$
7^{\prime}	$26.63(\mathrm{~d})$	$26.33(\mathrm{~d})$	$26.63(\mathrm{~d})$
8^{\prime}	$33.47(\mathrm{t})$	$34.69(\mathrm{t})^{b}$	$35.00(\mathrm{t})$
9^{\prime}	$33.47(\mathrm{t})$	$34.18(\mathrm{t})^{b}$	$34.67(\mathrm{t})^{b}$
10^{\prime}	$33.59(\mathrm{t})$	$27.57(\mathrm{t})$	$27.86(\mathrm{t})$
CH_{3}		$19.41(\mathrm{q})$	$19.73(\mathrm{q})$

${ }^{a}$ Determined in CDCl_{3} at 25.1 MHz and expressed in ppm downfield from $\mathrm{Me}_{4} \mathrm{Si}$. The multiplicities are given in parentheses. ${ }^{b}$ These sets of values may be interchanged within the same column.
$\pm 0.8^{\circ}$ out of planarity) conformers in the gas phase with an interconversion barrier of only $0.02 \mathrm{kcal} / \mathrm{mol}$ through the planar conformation. ${ }^{30}$ NMR measurements favor a planar cyclobutanone ring in a liquid crystal matrix. ${ }^{31}$ And recent circular dichroism (CD) studies have shown that 2,2-dimethylcyclobutanone, which is a better model for the cyclobutanone of $\mathbf{1 , 2}$, 11, and 14, exists in interconverting puckered (enantiomeric) conformations in solution. ${ }^{32}$ Consequently, spiro ketone $\mathbf{1 1}$ may be viewed as having a time-average plane of symmetry passing through carbons $1\left(2^{\prime}\right), 2,3,4,5^{\prime}, 6^{\prime}$, and 7^{\prime}. Molecular mechanics (MM2) ${ }^{33}$ computations on 11 give a total steric energy of the energy-minimized conformation (with a 3.2° puckered cyclobutanone ring, as determined by $\phi(1-4-3-2)$) only $0.03 \mathrm{kcal} / \mathrm{mol}$ lower in energy than that of the conformation with a planar cyclobutanone. Further cyclobutanone puckering (to 6°) in 11 increases the total steric energy by only $0.01 \mathrm{kcal} / \mathrm{mol}$ above the energy-minimized geometry. Even larger amplitude puckering $\left(13^{\circ}\right)$ affords only small increases ($0.2 \mathrm{kcal} / \mathrm{mol}$) in total steric
(30) (a) Stigliani, W. M.; Laurie, V. W.; Scharpen, L. H. J. Mol. Spectrosc. 1976, 62, 85-89. (b) Scharpen, L. H.; Laurie, V. W. J. Chem. Phys. 1968, 49, 221-228.
(31) d'Annibale, A.; Lunazzi, L.; Fronza, G.; Mondelli, R.; Bradamante, S. J. Chem. Soc., Perkin Trans. 2 1973, 1908-1911.
(32) Harris, R. N., III; Sundararaman, P.; Djerassi, C. J. Am. Chem. Soc. 1983, 105, 2408-2413 and references therein.
(33) Allinger, N. L.; Yuh, Y. Y. QCPE 1985, 423.

Table II. Coordinates ${ }^{a}$ of Methyl Carbons in Spiro Ketones 1, 2, and 14 and in Ketones 3 and 15 from MM2 ${ }^{b}$ Molecular Mechanics Calculations

ketone	torsion angle ϕ (1-4-3-2)	cyclobutanone conformation	methyl carbon coordinates, \AA^{a}			total steric energy, $\mathrm{kcal} / \mathrm{mol}$
			X	Y	Z	
1	-13°	puckered	-0.88102	2.88580	1.55415	53.3335
	0°	planar	-1.69450	2.48792	1.46872	53.0566
	$+13^{\circ}$	puckered ${ }^{\text {c }}$	-2.57388	1.89892	0.78934	52.5789
14	0°	planar	-1.56581	2.87075	1.36897	58.1552
	$+7^{\circ}$	puckered ${ }^{\text {c }}$	-2.08074	2.57271	1.07074	57.9738
3			2.54334	1.46656	-0.90471	
15			2.52717	1.39751	-1.24920	
2	-10°	puckered	1.34223	2.13577	-3.84380	52.2805
	0°	planar	1.56417	2.39883	-3.57629	51.9542
	$+10^{\circ}$	puckered ${ }^{\text {c }}$	1.69393	2.58793	-3.345 50	51.4523

${ }^{a}$ Uncertainty in the calculated values begins with the fourth significant figure. ${ }^{b}$ MM2 calculations (ref 33) with carbonyl carbon at origin and oxygen in the $+Z$ direction. ${ }^{c}$ Energy-minimized structure.

Figure 2. Increase in total steric energy (ΔE, vertical axis) vs. cyclobutanone ring puckering ($\phi(1-4-3-2)$, horizontal axis) as determined by MM2 molecular mechanics calculations for $11(\Delta), 1$ (\odot), and 2 (ロ). The increase in total steric energy ($\Delta E, \mathrm{kcal} / \mathrm{mol}$) is calculated as the energy increase above the energy of the energy-minimized structure for each ketone (see Table II).
energy. Taken collectively, the data indicate a very shallow double minimum potential energy well that tolerates moderately large amplitudes of cyclobutanone ring puckering in spiro ketone 11 (see Figure 2).

Introduction of a syn-methyl group at C-4' of $\mathbf{1 1}$ (to give $\mathbf{1)}$ or an anti-methyl group at $\mathrm{C}-8^{\prime}$ of $\mathbf{1 1}$ (to give $\mathbf{2}$), destroys the symmetry of the spiroappended adamantane and is expected to destabilize one of the two (enantiomeric) puckered cyclobutanone conformations (available in 11). MM2 calculations on 1 indicate that one puckered conformation, that with the $\operatorname{syn}-\mathrm{CH}_{3}$ and cyclobutanone $\mathrm{C}=\mathrm{O}$ farther apart (as represented by positive torsion angles, ϕ (1-4-3-2), Figure 2), possesses the energy-minimized stereochemistry. The energy well is fairly broad and rises shallowly as ϕ changes from $+13^{\circ}$ to -13° and steeply as ϕ assumes increasingly larger magnitudes. As ϕ changes from $+13^{\circ}$ to -13° the $\mathrm{C}=\mathrm{O}$ and syn- CH_{3} groups move closer together, with only modest increases in total steric energy at the planar cyclobutanone conformation [$\phi=0^{\circ}, \Delta E \simeq 0.5 \mathrm{kcal} / \mathrm{mol}$] and the $\phi=-13^{\circ}$ puckered conformation ($\Delta E \simeq 0.8 \mathrm{kcal} / \mathrm{mol}$). With increased ring puckering to move the syn $-\mathrm{CH}_{3}$ farther away from the $\mathrm{C}=\mathrm{O}$, e.g., ϕ moving from $+13^{\circ}$ to $+23^{\circ}$, the total steric energy rises steeply due to increased bending strain. A somewhat similar situation is obtained for 2 , where the 1,3 -diaxial steric repulsion between the anti- CH_{3} and the CH_{2} at C_{4} of the cyclobutanone ring becomes minimized in one of the cyclobutanone ring-puckered conformations-the one with $\phi(1-4-3-2)=+10^{\circ}$. As the cyclobutanone ring puckering is increased in the same direction, e.g., to $\phi=+23^{\circ}$, the total steric energy rises steeply. But as the cyclobutanone ring conformation moves through the planar form to the "enantiomeric" ring-puckered form, the energy increases only modestly: for $\phi=0^{\circ}, \Delta E \simeq 0.3 \mathrm{kcal} / \mathrm{mol}$; for $\phi=-10^{\circ}$,

Higure 3. Circular dichroism (CD) spectra of $5 \times 10^{-3} \mathrm{M} \operatorname{syn}-\left(1^{\prime} R\right)$ -spiro[cyclobutan-2-one-1, 2^{\prime}-(4'(a)-methyladamantane)] (1) in M1 (me-thylcyclohexane-isopentane, $4: 1(\mathrm{v} / \mathrm{v})(\cdots)$ and EPA (ether-iso-pentane-ethanol, $5: 5: 2, \mathrm{v} / \mathrm{v} / \mathrm{v})(-)$ and UV spectra in EPA (...) and M1 $(-\cdots-)$ at $25^{\circ} \mathrm{C}$. CD $(+)$ spectrum of $7 \times 10^{-3} \mathrm{M}$ syn-($\left.1^{\prime} S\right)$-spiro-[cyclobutanone-1, 7^{\prime}-(2^{\prime}-exo-methylnorbornane)] (14) in isopentane at 20 ${ }^{\circ} \mathrm{C}$, corrected to 100% ee and scaled to one-third value.

$\Delta E \simeq 0.8 \mathrm{kcal} / \mathrm{mol}$ (Figure 2) .

The molecular geometries are of particular interest in assessing the relative importance of octant contributions from ring atom perturbers vs. the lone CH_{3} perturber. In the planar cyclobutanone conformation, a symmetry plane passes through $\mathrm{C}-1\left(2^{\prime}\right),-2,-3$, $-4,-5^{\prime},-6^{\prime}$, and -7^{\prime} of spiro ketones 1 and 2 , and through $\mathrm{C}-1\left(7^{\prime}\right)$, $-2,-3$, and -4 of spiro ketone 14. Consequently, in these conformations, ring atoms make no contributions to the ketone $n \rightarrow$ π^{*} circular dichroism (CD) Cotton effect (CE), whose sign and magnitude are determined in each case by the lone disymmetric CH_{3} perturber. The CH_{3} groups of $\mathbf{1}$ and 14 lie well in front of the carbonyl carbon and oxygen, whereas the CH_{3} group of 2 lies far behind (Table II). Accordingly, if a quadrant chirality rule ${ }^{10}$ obtains, the CH_{3} perturbers of 1 and 14 should make a (+) contribution to the CE, and a net $(+) \mathrm{n} \rightarrow \pi^{*}$ CD CE should be seen. On the other hand, if the octant rule ${ }^{2,3}$ is obeyed, the CH_{3} perturbers of 1 and 14 should make a (-) contribution to the CE and lead to net $(-) n \rightarrow \pi^{*}$ CD CEs. The CD spectra of 1 and 14 are shown in Figure 3, and their $(-) \mathrm{n} \rightarrow \pi^{*} \mathrm{CEs}^{34}$ are in full

[^4]Table III. Reduced Rotatory Strengths ${ }^{a}$ of Spiro Ketones 1 and 2

ketone	solvent b	$[R]^{25}$	$[R]^{0}$	$[R]^{-50}$	$[R]^{-100}$	$[R]^{-150}$	$[R]^{-175}$
$\mathbf{1}$	EPA	-0.6112	-0.6139	-0.5904	-0.5351	-0.5427	-0.5609
	M1	-0.3083	-0.3952	-0.3797	-0.3697	-0.4210	-0.4224
	EPA	+0.1306	+0.2528	+0.4239	+0.6088	+0.7195	+0.8421
	M1	-0.0908	+0.1462	+0.4213	+0.6192	+0.7796	+1.0076

[^5] solvent contraction and ee. ${ }^{b} \mathrm{EPA}$ is ether-isopentane-ethanol $5: 5: 2, \mathrm{v} / \mathrm{v} / \mathrm{v}$; M1 is methylcyclohexane-isopentane $4: 1, \mathrm{v} / \mathrm{v}$.
accord with octant behavior; viz., the CH_{3} perturbers make strong front octant contributions. The locations of the front octant CH_{3} perturbers of 1 and 14 may be compared (Table II) with those of their precursor ketones 3 and 15 , respectively, which have their lone dissymmetric CH_{3} perturbers lying behind the $\mathrm{C}=\mathrm{O}$ carbon but just in front of the third nodal surface, B of Figure 1. Previously only weak and sometimes ambiguous front octant contributions had been observed for, e.g., $(1 S, 3 R)-4(S)$ (a)-methyl-adamantan-2-one (enantiomer of 3) [$\Delta \epsilon_{306}^{\max }=-0.046(\mathrm{EPA}) ; \Delta \epsilon_{313}^{\max }$ $=+0.025(\mathrm{MI})]{ }^{35}$ But the strong (-) CEs of 1 and 14 are in full accord with their CH_{3} perturbers, lying unambiguously in front octants, i.e., in front of A and B of Figure 1 (Table II).

When the cyclobutanone ring assumes a puckered conformation, the CH_{3} perturbers of $\mathbf{1}$ and $\mathbf{1 4}$ still lie in front of the $\mathrm{C}=\mathrm{O}$ carbon or oxygen, and the CH_{3} perturber of $\mathbf{2}$ still lies far behind the $\mathrm{C}=\mathrm{O}$ group. Here, however, the adamantane and norbornane ring atoms do not all fall on nor are they symmetrically disposed about an extended local symmetry plane of the $\mathrm{C}=\mathrm{O}$ group, and they would be expected to contribute to the $n \rightarrow \pi^{*}$ CD CE. In 1 and 14 , a puckered cyclobutanone conformer, with the $C=0$ moved slightly away from the syn- CH_{3}, is predicted by MM2 calculations to be favored by $0.2-0.5 \mathrm{kcal} / \mathrm{mol}$ over the planar conformation. Although these predictions do not take solvation effects into consideration, they suggest the importance of a conformation in which the adamantane and norbornane ring atoms make a weak (+) contribution to the CE . thus, in the energyminimized conformer of 1 and 14 , with the cyclobutanone ring puckered to move the $\mathrm{C}=\mathrm{O}$ away from the CH_{3} group [1, $\phi(1-$ $\left.4-3-2)=+13^{\circ} ; 14, \phi(1-4-3-2)=+7^{\circ}\right]$, adamantane and norbornane ring atoms 1^{\prime} assume a ψ-axial configuration on the cyclobutanone ring and are expected therefore to make a more positive octant contribution than the negative contribution of their counterpart ψ-equatorial atoms (3^{\prime} of 1 and 4^{\prime} of $\mathbf{1 4}$). ${ }^{33}$ However, even these (+) back octant contributions are dominated by the intense (-) contribution of the front octant CH_{3} perturber, and the net CD CE is negative even at $-175^{\circ} \mathrm{C}$ (Table III).

In the anti-spiro ketone 2, the situation is different. Its CH_{3} perturber lies well to the rear in a back octant, and both the octant and quadrant rules predict it should make a (-) contribution to the $n \rightarrow \pi^{*}$ CD CE. However, the CD spectra of 2 (Figure 4) are unusual in that the CE sign is found to be solvent dependent at $25^{\circ} \mathrm{C}$. The (-) CE observed in the hydrocarbon solvent is characteristic of back octant (consignate) behavior for the CH_{3} perturber, but the $(+)$ CE in the more polar solvent, EPA, is not. Upon lowering the temperature, the CD CEs are all (+), and the magnitudes increase (Table III). Although asymmetric solvation ${ }^{35-37}$ may play a role in determining the CE sign at room temperature, we assume that a nonplanar cyclobutanone conformer becomes important-a conformation in which the inherently (-) back octant contribution of the CH_{3} perturber is dominated by $(+)$ contributions from the adamantane skeleton, especially from ring atoms lying close to the $\mathrm{C}=\mathrm{O}$ group. In particular, as the cyclobutanone ring bends away from planar conformation, the α-carbons (1^{\prime} and 3^{\prime} of the adamantane) are no longer equidistant above and below the $Y Z$ octant symmetry plane and begin to take on more axial and equatorial-like positions, depending on which bent conformation is assumed. ${ }^{33}$ In the MM2 energy-minimized

[^6]

Figure 4. Circular dichroism (CD) spectra of $4 \times 10^{-3} \mathrm{M}$ anti-($\left.1^{\prime} R\right)$ -spiro[cyclobutan-2-one-1, 2^{\prime}-(4-(a)-methyladamantane)] (2) in MI ($-\ldots$) and EPA (-) and UV spectra in EPA (...) and M1 (-..-) at $25^{\circ} \mathrm{C}$.
conformation, adamantanone carbon 1^{\prime} assumes a ψ-axial configuration on the cyclobutanone ring, and this conformation is expected to have a (+) CE. As the temperatures are lowered and more of the energy-minimum conformer becomes present, the net CE is increasingly dominated by contributions from this puckered cyclobutanone structure.

Conclusions

We have shown experimentally that an octant rule rather than a quadrant rule governs the behavior of certain saturated alkyl ketones, 1 and 14 , whose dissymmetric CH_{3} perturbers lie well in front of the third nodal surface. The CD CEs of these substances are dominated by strong (-) front octant contributions of the CH_{3} groups, as opposed to the (+) contributions produced by a quadrant rule. Although the locations of the CH_{3} perturbers are not the same for 1 and 14 (Table II), the CD spectra are complementary and show that the front octant contributions found in this work are not associated with a unique and specific location of the CH_{3} group but rather with the fact that these perturbers lie well in front of the octant rule third nodal surface.

Experimental Section

General. Circular dichroism (CD) spectra were recorded on a JASCO J-40 instrument equipped with a photoelastic modulator and a J-DPY data processor. Ultraviolet (UV) spectra were recorded on a Cary 219 spectrophotometer, and specific rotations were determined in chloroform, unless otherwise indicated, on a Perkin-Elmer 141 polarimeter. All nuclear magnetic resonance (NMR) spectra were determined in CDCl_{3} and reported in δ (parts per million) downfield from tetramethylsilane unless otherwise indicated on a Perkin-Elmer R-24B, Varian A-60, Varian XL-100, or JEOL FX-100 instrument. Mass spectra (MS) were recorded at $70-, 20$-, or $14-\mathrm{eV}$ ionizing voltage on a JEOL JMS-07, AE1 MS-9, or Varian MAT-311 mass spectrometer. Infrared (1R) spectra were measured on a Perkin-Elmer Model 599 or 457 instrument. All melting points are uncorrected and were determined on a Thomas-Hoover or Mel-Temp cappillary apparatus. Combustion analyses were performed by Micro-Analytical Lab, Mountain View, CA. Analytical gas chro-
matography (GC) was carried out on a Varian-Aerograph Model 2400 $\mathrm{F} / 1$ instrument using a $6 \mathrm{ft} \times 1 / 8$ in. diameter column with 12% QF-1 stationary phases absorbed on 80/100 Chromosorb W AW, DMCS. Preparative gas chromatography (GC) was achieved on a $6 \mathrm{ft} \times \frac{3}{8}$ in. diameter column (12% of QF-1 on $60 / 80$ Chromosorb W AW-DMCS) by using a Varian Aerograph Model 1720 T/C instrument.

Spectral data were obtained by using spectral grade solvents (MCB): isopentane, methylcyclohexane-isopentane, 4:1, v/v (M1), and ether-isopentane-ethanol, $5: 5: 2, \mathrm{v} / \mathrm{v} / \mathrm{v}(\mathrm{EPA})$. Other solvents were distilled and dried before use: benzene, petroleum ether ($30 / 60$), hexane, chloroform, and dichloromethane all from $\mathrm{P}_{2} \mathrm{O}_{5}$; acetone from KMnO_{4}, and diethyl ether and tetrahydrofuran from LiAlH_{4} under N_{2}. The solvents were used freshly distilled or stored under 4A molecular sieves (Linde). Dimethyl sulfoxide ($\mathrm{Me}_{2} \mathrm{SO}$) was distilled from CaH_{2} and stored over 4A molecular seives (Linde). Column chromatography was accomplished on Florisil (Floridin Co .) or ($0.05-0.20 \mathrm{~mm}$) Merck silica gel. Analytical thin-layer chromatography (TLC) was carried out on a $125-\mu \mathrm{m}$ layer of silica gel F (M. Woelm, Eschwege), preparative layer chromatography with a $1000-\mu \mathrm{m}$ layer.

Synthesis of (+)-2-Carboxyadamantan-4,8-dione ($\mathbf{4 a}+\mathbf{4 b}$). Dione acid 4 was prepared by procedure used earlier ${ }^{17,21,38 b}$ and is presented here as a large-scale synthesis with improvements.
(a) 1,3,5,7-Tetracarbomethoxybicyclo[3.3.1]nona-2,6-diene-2,6-diol (Meerwein's Ester). In a 3-L three-neck round-bottom flask equipped with a Dean-Stark water separator were added $528 \mathrm{~g}(4.00 \mathrm{~mol})$ of dimethyl malonate (Aldrich), $96.0 \mathrm{~g}(3.20 \mathrm{~mol})$ of paraformaldehyde (Eastman), piperidine (8 mL), and benzene (750 mL). This mixture was stirred at room temperature for 2 h and then brought to reflux (very gentle reflux at first so as not to distill the azeotrope during the first 8 h). After 8 h at reflux, the azeotrope was allowed to distill out of the pot into the Dean-Stark water separator. The azeotrope was removed at the end of $6-8 \mathrm{~h}$ (ca. 53 mL of water was removed). At this time, the refluxing was ended (the second azeotrope was ignored and not removed), and the solvent was removed on a rotary evaporator to give 625 g of an oil.

To a refluxing solution of 132 g (5.68 g -atoms) of sodium dissolved in 1600 mL of absolute methanol in a 3-L three-neck flask equipped with a mechanical stirrer, reflux condenser, and a drying tube there was added rapidly, in one portion, the combined oils (above) from two preparations, 1230 g . Only a small amount of heat was liberated. After stirring 7 h at reflux, the clear solution had become yellow, and a precipitate had formed. After the solution was stirred a total of 8 h , a distillation head was placed on the flask and methanol was distilled at reduced pressure, using a water aspirator, until the volume was reduced from one-half to one-third of the original volume. The reaction mixture, kept dry at all times with drying tubes, was then cooled in ice-water. Two liters of ice water was then added to dissolve the syrupy precipitate. The aqueous solution was extracted 2 times with 500 mL of ether. The ether layers were washed once with water, and all the aqueous layers were combined. Carbon dioxide was bubbled into the aqueous solution until the pH was 7-8. The precipitate which formed was filtered, washed well with water, and air-dried to give $390 \mathrm{~g}(51 \%)$ of Meerwein's ester. The melting point was usually about $161-163^{\circ} \mathrm{C}$ but also varied between 153 and $164^{\circ} \mathrm{C}$ [lit. ${ }^{21} \mathrm{mp} \mathrm{163-164}{ }^{\circ} \mathrm{C}$ (crystallized from methanol)].
(b) Bicyclo[3.3.1]nona-2,6-dione. Meerwein's ester ($110 \mathrm{~g}, 0.724 \mathrm{~mol}$) and 300 mL of glacial acetic acid were brought to reflux in a $1-\mathrm{L}$ oneneck round-bottom flask equipped with a condenser and dropping funnel placed atop the condenser. There was added slowly over 12 h 200 mL of 6 N aqueous HCl , and the mixture was heated at reflux for 12 h . The water-hydrochloric acid-acetic acid mixture was removed by distillation under reduced pressure (using a plastic water aspirator). The semisolid pot residue was transferred to a smaller flask by using benzene as the transfer solvent and distilled at reduced pressure by using a vacuum pump. The solid diketone distills at $125-150{ }^{\circ} \mathrm{C}(1-4 \mathrm{~mm})$ and melts at $139-147{ }^{\circ} \mathrm{C}$. Recrystallization from ethanol (50 g of diketone dissolves in 70 mL of hot ethanol) gave a pure sample, $31.5 \mathrm{~g}(72 \%), \mathrm{mp}$ $145-148.5^{\circ} \mathrm{C}$ [lit. $.^{21.38 \mathrm{a}} \mathrm{mp} 138-140,141^{\circ} \mathrm{C}$].
(c) (\pm)-2-Carbomethoxyadamantane-4,8-dione ($\mathbf{5 a} \mathbf{+ 5} \mathbf{5}$). The bisenamine of bicyclo[3.3.1]nona-2,6-dione was formed in a 1-L one-neck round-bottom flask equipped with a Dean-Stark water separator by combining the following reagents: $40 \mathrm{~g}(0.263 \mathrm{~mol})$ of dione, 60 g (0.845 $\mathrm{mol}, 70.5 \mathrm{~mL}$) of pyrrolidine (Matheson, undistilled), 100 mg of p toluenesulfonic acid, and 320 mL of reagent-grade benzene. This mixture was heated at reflux for $2-3 \mathrm{~h}$ during which time 10.2 mL of $\mathrm{H}_{2} \mathrm{O}$ was removed (theoretical yield of $\mathrm{H}_{2} \mathrm{O}$ is 9.46 g). At this time, the benzene and excess pyrrolidone were removed on a rotary evaporator by using a 658, 151-155. (c) Stetter, H.; Thomas, H. G. Chem. Ber. 1966, 99, 920-924.
$70-80^{\circ} \mathrm{C}$ hot-water bath. The flask was then evacuated at 1 mm for a few minutes with heating from a hot air gun to remove as much of the pyrrolidine as possible. Nitrogen was admitted to the flask, and 240 mL of chloroform (previously stored over 3A and 4A molecular sieves) was added.

The bis-enamine solution was kept under nitrogen, and a condenser and dropping funnel were attached to the flask using a 2 -for- 1 adapter. While still under nitrogen, the chloroform solution of the bis-enamine was brought to reflux, and a solution of $30.2 \mathrm{~g}(14.6 \mathrm{~mL}, 0.130 \mathrm{~mol})$ of methyl dibromoacetate [K\&K Laboratories] in 80 mL of chloroform was added over a period of 2 h . The nitrogen blanket and reflux were maintained throughout. The deep-red, almost black solution was heated at reflux for an additional 0.5 h after the addition was complete; then, the reaction mixture was allowed to stand at room temperature overnight. One hundred and sixty milliliters of 10% aqueous HCl were added, and the mixture was heated to reflux. Reflux was maintained for 45 min . The reaction was cooled, and the chloroform layer was separated. The aqueous layer was extracted with chloroform ($3 \times 50 \mathrm{~mL}$), and the combined extracts were washed with water ($3 \times 100 \mathrm{~mL}$), dried (MgS O_{4}), and concentrated on a rotary evaporator. The residue after chloroform removal was distilled under vacuum (0.2 mm) to give fraction 1 (12 g of liquid ($25-100^{\circ} \mathrm{C}$ plus solid ($110-145^{\circ} \mathrm{C}$) and fraction 2 (solid 8.6 g , bp $145-170^{\circ} \mathrm{C}$). Fraction 1 yielded mostly dione by crystallization, although the ${ }^{1} \mathrm{H}$ NMR showed the mother liquors to contain some dione ester 5. Fraction 2 yielded the desired dione ester $(\mathbf{5 a}+\mathbf{5 b}), 6.0$ $\mathrm{g}, 10.3 \%$, mp $124-125^{\circ} \mathrm{C}$, after recrystallization from 2-propanol with small amounts of added pentane or from ethanol [lit. ${ }^{38 \mathrm{~b}, \mathrm{c}} \mathrm{mp}$ 115-120, $\left.120-121^{\circ} \mathrm{C}\right]$.
(d) (\pm)-2-Carboxyadamantane-4,8-dione ($\mathbf{4 a}+4 \mathrm{~b}$). The preparation may be accomplished on either pure dione ester $5 \mathbf{a}$ and 5 b or dione ester contaminated with dione from the previous step. The acid can be extracted into aqueous bicarbonate, and this aqueous solution can be extracted with dichloromethane, acidified with dilute aqueous hydrochloric acid, and dried by using a benzene-water azeotrope. The dione acid thus obtained can be further purified by crystallization from acetone or ace-tone-petroleum ether.
There were combined 16.5 g of a mixture of dione ester $(5 a+5 b)$ and dione [70% dione ester and 30% dione by ${ }^{1} \mathrm{H}$ NMR] and 75 mL of concentrated HCl . The mixture was heated at reflux for 9 h and distilled to dryness (at aspirator pressure, bp $35-50^{\circ} \mathrm{C}$) to give a beige solid. The dione acid product was dissolved in 5% aqueous NaHCO_{3} from which dione and other impurities could be extracted into dichloromethane. The aqueous layer was then acidified with aqueous HCl , and the water was removed by adding benzene then distilling a benzene-water azeotrope. This procedure gave $11.7 \mathrm{~g}, 75 \%$ yield, of a beige solid, $\mathrm{mp} 228-331^{\circ} \mathrm{C}$ lit. $.^{17 \mathrm{~d}} \mathrm{mp} 222-224,228-230^{\circ} \mathrm{C}$]. Thin-layer chromatography of the acid showed no dione (silica gel, $8: 2$ dichloromethane-ethyl acetate; R_{f} of acid, $0-0.1, R_{f}$ of dione, 0.38). The suggested recrystallization solvent, 1,4dichlorobutane ${ }^{17 \mathrm{~d}}$ at $120-130^{\circ} \mathrm{C}$, offered no advantage. Acetone or acetone-petroleum ether was at least an equally good recrystallization solvent.

Resolution of 2-Carboxyadamantane-4,8-dione ($4 \mathbf{a}+\mathbf{4 b}$). The cinchonidine salt of the dione acid was prepared by mixing 14.4 g (0.069 mol) of racemic 4 and 20.4 g (0.069 mol) of cinchonidine (Matheson) and heating in chloroform to effect dissolution. Evaporation of the chloroform gave a salt which was recrystallized 5 times from 2 -butanone. Each successive recrystallization gave material with (1) $[\alpha]^{22}{ }_{589}-96.7^{\circ}$, (2) $[\alpha]^{22}{ }_{589}-101.6^{\circ}$, (3) $[\alpha]^{22}{ }_{589}-103.5^{\circ}$, (4) $[\alpha]^{22}{ }_{589}-103.6^{\circ}$, and (5) $[\alpha]^{22}{ }_{589}-103.4^{\circ}$. The $(-)$-($1 S$)-dione acid $\mathbf{5 b}$ was regenerated from its cinchonidine salt [fifth crystallization $\left.4.15 \mathrm{~g},[\alpha]^{22}{ }_{589}-103.4^{\circ}\right]$ by stirring overnight with 38 g of Dowex $50 \mathrm{~W}-\mathrm{X} 2^{39}$ ion-exchange resin in 1 mL of water. The resin was removed by filtration, and the aqueous solution was extracted for 24 h with CHCl_{3} by using a continuous extractor. The CHCl_{3} layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated at reduced pressure to yield a grey-white solid: $1.68 \mathrm{~g}, 97.6 \%$ recovery, mp 234-238 ${ }^{\circ} \mathrm{C}\left[\right.$ lit. $\left..^{17 \mathrm{a}} \mathrm{mp} 235-240^{\circ} \mathrm{C}\right],[\alpha]^{22}{ }_{589}-13.3^{\circ}(c 0.97)$. This corresponds to $>99 \%$ ee as determined from chiral shift reagent studies. The mother liquor from the fifth crystallization gave 0.7 g of $(-)-(1 S)$-dione acid $\mathbf{4 b}$, $[\alpha]^{22}{ }_{589}-12.8^{\circ}(c 1.1)$.
$(+)-(15)$-2-Carbomethoxyadamantan-4-one 8-Ethylene Dithioketal (6). To $1.38 \mathrm{~g}(6.64 \mathrm{~mol})$ of (1)-(1S)-diketo acid $\mathbf{4 b},[\alpha]_{589}^{22}-13.3^{\circ}(c$ 1.0), 100% ee, was added 35 mL of glacial acetic acid, 0.46 mL (7.7 mmol) of ethanedithiol dissolved in 16 mL of acetic acid, and 3.5 mL of BF_{3} etherate. After 6 h of stirring at room temperature, an additional 1.8 mL of BF_{3} etherate was added, and the reaction mixture was stirred an additional 14 h at room temperature. The reaction mixture was then concentrated by distillation at reduced pressure (water aspirator) until
(39) We thank Dow Chemical Co., Midland, MI, for a generous gift of Dowex 50W-X2.
about $7-9 \mathrm{~mL}$ of liquid remained in the flask. About 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, the solution was washed 3 times with water, and the combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were dried $\left(\mathrm{MgSO}_{4}\right)$. After evaporation of the solvent, a solid mixture of mono and bis(ethylene dithioketals) was obtained, 1.63 g. The solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-ether (the acid is only slightly soluble in ether) and esterified with excess diazomethane (about 0.5 g of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was generated from 3.6 of Diazald (Aldrich) and 0.85 g of $\mathrm{KOH})$. The yellow solution was allowed to stand overnight and gave an oil after removal of the solvent. The oily product was chromatographed on a silica gel column packed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Elution with 10% ethyl acetate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a satisfactory separation of 6 from the bis(thioketal) (crude yield 6%). The pure monothioketal 6 solidified on standing, mp $150-152^{\circ} \mathrm{C}$ [lit. ${ }^{17 \mathrm{a}} \mathrm{mp} 150-151^{\circ} \mathrm{C}$], 72% yield. It was used directly in the next step.
(+)-(1S)-2(R)(a)-Carbomethoxyadamantan-4-one (7). Monothioketal $6(2.41 \mathrm{~g}, 8.1 \mathrm{mmol}, 100 \%$ ee) was dissolved in 300 mL of absolute ethanol, and 6 teaspoonsful of $\mathrm{W}-2 \mathrm{Ni}(\mathrm{R})^{40}$ were added. The solution was stirred mechanically for 11 h at room temperature, at which time the desulfurization was complete. After the black nickel powder had settled to the bottom of the flask, the clear ethanolic solution was decanted through a filter. The residual nickel was washed several times with absolute ethanol. The combined ethanolic fractions were evaporated to yield an oil. The oily product was dissolved in 35 mL of acetone and cooled to $5^{\circ} \mathrm{C}$ in an ice bath. Cold Jones Reagent ${ }^{41}$ (about 2 mL), was added until an orange-brown color remained, and the mixture was stirred for an additional 20 min at $5^{\circ} \mathrm{C}$. Aqueous NaHSO_{3} was added until the mixture turned green; then, water was added to dissolve the salts. The mixture was extracted 3 or 4 times with ether, and the ether solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give 1.02 g of an oil, which exhibited only one spot on TLC (20% ethyl acetate $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$). 1t was used directly in the next step.
$(+)-(1 R, 3 S)-4(R)($ a)-Hydroxymethyladamantan-2-one (8). Step 1. Ketalization. In a $50-\mathrm{mL}$ round-bottom flask, a mixture of ethanolic (12.5 mL), 2,2-dimethoxypropane (ca. 2 mL), p-toluenesulfonic acid (30 $\mathrm{mg})$, and the keto ester $7(0.930 \mathrm{~g}, 4.61 \mathrm{mmol}, 100 \%$ ee $)$ was allowed to reflux overnight. After cooling, 12 mL of water containing 0.14 g of sodium carbonate were added to basify, and the mixture was extracted 5 times with dichloromethane. The combined dichloromethane extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give 1.14 g of an oily ketal: ${ }^{1} \mathrm{H}$ NMR $\delta 1.5-2.8(13 \mathrm{H}), 3.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, and $3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right)$.

Step 2. Reduction. The oily ketal obtained above $(1.14 \mathrm{~g}, 4.49 \mathrm{mmol}$, 100% ee) was dissolved in 59 mL of anhydrous ether, and 0.53 g (13.9 mmol) of lithium aluminum hydride was carefully added. The mixture was stirred magnetically for 8 h and then an additional 0.52 g 91.37 mmol) of lithium aluminum hydride was added. The mixture was stirred overnight at room temperature. The reaction mixture was worked up by successive dropwise addition (with cooling) of 0.6 mL of water, 0.6 mL of 15% aqueous NaOH , and 1.6 mL of water. The resulting granular precipitate was filtered and washed thoroughly with ether. The combined filtrates were dried, and the ether was evaporated to yield hydroxymethyl ketal, an oil, $920 \mathrm{mg}, 91 \%$ yield.

Step 3. Hydrolysis. The hydroxymethyl ketal ($920 \mathrm{mg}, 4.07 \mathrm{mmol}$, 100% ee) was dissolved in 20 mL of acetone, 10% aqueous $\mathrm{HCl}(20 \mathrm{~mL})$ was added, and the mixture was heated at reflux for 2 h . On cooling, the mixture was neutralized with solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and was extracted 4 times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were washed with saturated aqueous NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give 880 mg of an oil. The oil was chromatographed on 50 g of Florisil. The column was packed with $50: 50$ petroleum ether $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and gradually changed to $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then to $96: 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}-$ ether eluent. The yield of the hydroxymethyl ketone 8 was $680 \mathrm{mg}(3.87 \mathrm{mmol}, 93 \%)$. The overall yield was 82% from $(+)-(1 S, 3 R)-2(R)$ (a)-carbomethoxyadamantan-4one (7), and the material was used directly in the next step.
$(+)-(1 R, 3 S)-4(R)(a)-(B r o m o m e t h y l)$ adamantan-2-one (9). Under a nitrogen atmosphere, a solution of 2 mL (ca. $6.3 \mathrm{~g}, 39.1 \mathrm{mmol}$) of bromine in 45 mL of dimethylformamide was added dropwise into a solution of $9.7 \mathrm{~g}(37 \mathrm{mmol})$ of triphenylphosphine and $680 \mathrm{mg}(3.77$ mmol) of ($1 R, 3 S$)-4(R)(a)-hydroxymethyladamantan-2-one (8) (100% ee) in 60 mL of dimethylformamide contained in a $200-\mathrm{mL}$ round-bottom flask at room temperature. A yellow-orange color persisted at the end of the bromine addition. The mixture was then heated in an oil bath at $90^{\circ} \mathrm{C}$ for 24 h . On cooling, it was poured into cold water to yield a flocculent precipitate. Solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added until the mixture was pH neutral, and it was then extracted 4 times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. $250-\mathrm{mL}$
(40) Fieser, L. F.; Fieser, M. "Reagents for Organic Synthesis"; Wiley: New York, 1967; Vol. I, pp 723-731.
(41) Eisenbraun, E. J. "Organic Syntheses"; Wiley: New York, 1973; Collect. Vol. 5, pp 310-314.
total was used). Removal of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ left $40-50 \mathrm{~mL}$ of a liquid which was mostly dimethylformamide. Water was added, and the aqueous solution was extracted several times with ether. A solid containing some triphenylphosphine oxide was obtained after removal of the ether. The solid was dissolved in benzene and chromatographed on a silica gel column (2.5 cm i.d. $\times 34 \mathrm{~cm}$) packed in $70: 30 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-petroleum ether. The eluent was gradually changed to $90: 10 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-petroleum ether, and about 20 mL was collected for each fraction. The 4(a)-(bromo-methyl)adamantan-2-one (9), $748 \mathrm{mg}(82 \%)$, was collected in fractions $10-30$ and identified by its ${ }^{1} \mathrm{H}$ NMR spectrum: $\delta 3.24(2 \mathrm{H}, \mathrm{d}, J=7$ $\mathrm{Hz},-\mathrm{CH}_{2} \mathrm{Br}$). It was used directly in the next step.
$(-)-(1 R, 3 S)-4(R)(a)$-Methyladamantan-2-one (3). W-4 Raney nickel ${ }^{40}(15 \mathrm{~g}$, freshly prepared) was added to a solution of $(+)$ ($1 R, 3 S$)-4 (R)(a)-(bromomethyl)adamantan-2-one (9) ($0.736 \mathrm{mg}, 3.03$ mmol) in 100 mL of an ethanol-acetone mixture, and the heterogeneous mixture was heated at reflux for 10 h and maintained an additional 10 h at room temperature. TLC analysis showed only one spot corresponding to the desired product. The clear solution was decanted. The nickel catalyst was washed several times with acetone followed by decantation. The combined solutions were filtered and evaporated to give a solid which was treated with Jones reagent as in the earlier desulfurization reaction. The product was column-chromatographed on silica gel using 10% ether in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $0.454 \mathrm{~g}(91 \%)$ of a white solid: $[\alpha]^{22}{ }_{589}-20.5^{\circ}(c 0.976), \mathrm{mp} \mathrm{187-189}{ }^{\circ} \mathrm{C}\left[1 \mathrm{it} .{ }^{17 \mathrm{~b}} \mathrm{mp} \mathrm{185-187}{ }^{\circ} \mathrm{C}\right.$), TLC (10% ethyl acetate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) showed only one spot, $R_{f}=0.62: 1 \mathrm{R}$ $\left(\mathrm{CCl}_{4}\right) \nu 1715 \mathrm{~cm}^{-1}$; MS, $m / z 164.1199\left[\mathrm{M}^{+}, \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}, 164.1201\right]$; UV and CD. ${ }^{35}$

Determination of Enantiomeric Excess (ee) and Absolute Conflguration of (-)-(1R,3S)-4(R)(a)-Methyladamantan-2-one (3). LlS-NMR techniques were used. Racemic 4(a)-methyladamantan-2-one, which had been prepared from racemic 4 exactly as $\mathbf{3}$ was prepared from 4 (above) in a procedure that involved no crystallization steps ($15 \mathrm{mg}, 0.093 \mathrm{~mol}$), was reduced stereospecifically with excess LiAlH_{4} in ether at room temperature during 2 h to afford a nearly quantitative yield of the syn-4-(a)-methyladamantan-2(a)-ol (10a $+\mathbf{1 0 b})$. We could detect no epimeric alcohol impurity either by GC or by ${ }^{1} \mathrm{H}$ NMR. Addition of tris [3-(tri-fluoromethylhydroxymethylene)- d-camphorato]europium(11I), Eu(tfc) $)_{3}$ (Aldrich), to the alcohol in CDCl_{3} shifted its $\mathrm{H}-\mathrm{C}-\mathrm{O}$ hydrogen downfield and resolved it into a 1.00:1.00 integrated ratio of t wo broadened singlets. Similarly, the CH_{3} doublet resolved into two doublets. When the synalcohol 10b from (-)-3, $[\alpha]^{22}{ }_{589}-20.5^{\circ}(c 0.976)$, again prepared with no intervening crystallization steps, was examined by LlS-NMR when using $\mathrm{Eu}(\mathrm{tfc})_{3}$, only one $\mathrm{H}-\mathrm{C}-\mathrm{O}$ singlet (br) appeared. It integrated to $>99 \%$ of the combined region where both diastereotopic $\mathrm{H}-\mathrm{C}-\mathrm{O}$ signals would have appeared. This alcohol, and hence its parent ketone, has $>99 \%$ ee. Since no crystallization steps intervened between the ketone and its precursor (-)-(1S)-2-carboxyadamantan-4,8-dione (4b), we conclude that the dione with $[\alpha]^{22}{ }_{589}-13.3^{\circ}(c 0.97)$ is $>99 \%$ enantionerically pure. This means that the acid resolved with cinchonidine to $>99 \%$ ee in three crystallizations.

These conclusions were confirmed with the Mosher esters ${ }^{23,24}$ of racemic and optically active syn-alcohols prepared above. The Mosher esters were prepared as before ${ }^{24}$ by using the acid chloride of (R) $(+$)- α-methoxy- α-(trifluoromethyl)phenylacetic acid [$(R)-(+)$-MTPA, Aldrich]. The ester of racemic alcohol $10 \mathbf{a}+\mathbf{1 0 b}$, in the presence of $\mathrm{Eu}(\mathrm{fod})_{3}$ (Aldrich), gave two signals of equal intensity for the set of diastereomeric OCH_{3} groups (${ }^{1} \mathrm{H}$ NMR $\delta 6.67$ and 6.55). In the ${ }^{19} \mathrm{~F}$ NMR, the CF_{3} signal was split into two lines ($\delta 35.12$ and 34.92 vs. $\mathrm{CFCl}{ }_{3}$ internal standard) of equal intensity without addition of $\mathrm{Eu}(\mathrm{fod})_{3}$. The ester of the optically active alcohol 10b gave only one signal at 6.67 $\mathrm{ppm}\left({ }^{1} \mathrm{H}\right.$ NMR, $\left.\mathrm{Eu}(\mathrm{fod})_{3}\right)$ and one at 35.12 ppm (vs. $\mathrm{CFCl}_{3},{ }^{19} \mathrm{~F}$ NMR). Integration over the range of both diastereomeric sets of signals indicated that the optically active ester had $>99 \%$ ee, in agreement with the previous NMR results.

The absolute configuration of $\mathbf{1 0 b}$, and hence $\mathbf{3}$, was assigned ($1 R, 3 S$) as shown in the following. The more shielded signal of the set of diastereomeric CF_{3} groups was faster moving upon addition of $\mathrm{Eu}(\mathrm{fod})_{3}$. As explained earlier, ${ }^{24}$ the faster moving signal corresponds to the CF_{3} group of enantiomer 10a. Since the more deshielded signal corresponds to the $(R)-(+)$-MTPA ester of the alcohol $\mathbf{1 0 b}$ derived from 3, 3 and its precursor $\mathbf{4 b}$ and derivatives $\mathbf{1}$ and $\mathbf{2}$ have the absolute configuration assigned in Scheme I.

Spiro[cyclobutan-2-one-1,2'-adamantane] (11). (1) Sulfonium Ylide Method. Adamantan-2-one ($305 \mathrm{mg}, 2.03 \mathrm{mmol}$) (Aldrich) and cyclopropyldiphenylsulfonium tetrafluoroborate ${ }^{25 \mathrm{~b}}$ ($785 \mathrm{mg}, 2.50 \mathrm{mmol}$) were mixed with 17 mL of $\mathrm{Me}_{2} \mathrm{SO}$ in a $50-\mathrm{mL}$ round-bottom flask equipped with a condenser. Potassium hydroxide pellets (520 mg) were added, and the mixture (the pellets do not dissolve) was stirred at room temperature for 24 h . The solution was pipetted into a $60-\mathrm{mL}$ separatory funnel containing a solution of 2 mL of 6 N HCl in 10 mL of water. Twenty
milliliters of ether were used to wash the original reaction flask which still contained undissolved KOH pellets. The ether washing was added to the separatory funnel to extract the reaction product, and the layers were separated. Three $20-\mathrm{mL}$ portions of ether were used to extract the aqueous layer, and the ether layers were combined. The combined ether fractions were washed twice with water and aqueous NaCl and dried (MgSO_{4}). The ether was evaporated at reduced pressure to yield a mixture of liquid and a solid. TLC showed that the product contained diphenylsulfide, spiro annelated product 11 and a small amount of unreacted adamantan-2-one. The product mixture was dissolved in benzene and separated on a silica gel column (15 cm i.d. $\times 18 \mathrm{~cm}$). Benzene eluted diphenyl sulfide, and the spiroannelated product 11 was obtained, after removal of the solvent, as a white crystalline solid: $254 \mathrm{mg}, 66 \%$ yield, $\mathrm{mp} 87-88^{\circ} \mathrm{C}$ (after crystallization from methanol-water); UV (isooctane) $\epsilon_{298}^{\max }=27 ; 1 \mathrm{R}\left(\mathrm{CCl}_{4}\right) \nu 1766 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.58-2.30(16$ H), $2.94\left(\mathrm{t}, 2 \mathrm{H}, J=6 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CO}-\right)$; MS, $m / z 190.1306\left[\mathrm{M}^{+}\right.$., $\left.\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}, 190.1358\right]$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 82.06 ; \mathrm{H}, 9.53$. Found: $\mathrm{C}, 81.91 ; \mathrm{H}$, 9.46.

In a typical small scale reaction, a solution of adamantan-2-one (51 $\mathrm{mg}, 0.34 \mathrm{mmol}$) and cyclopropyldiphenylsulfonium tetrafloroborate (136 $\mathrm{mg}, 0.43 \mathrm{mmol}$) in 5 mL of $\mathrm{Me}_{2} \mathrm{SO}$ was stirred in a $25-\mathrm{mL}$ round-bottom flask for 65 h at room temperature. The solution was then worked up as the manner described in the previous section. The product mixture was dissolved in a few drops of benzene and the components were separated with preparative TLC plates by using benzene. When viewed with the aid of iodine vapor, three bands were seen on the plates: band 1, R_{f} $=0.65$, diphenylsulfide; band $2, R_{f}=0.29$, spiro ketone 11 ; and band 3 , $R_{f}=0.10$, adamantan- 2 -one. Band 2 was scraped from the plates and extracted with ether. The ether solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness. There was obtained a crystalline solid (slightly brownish), 62 mg ($0.33 \mathrm{mmol}, 96 \%$).

A brief study was made on the effect of reaction temperature on the larger-scale spiroannelation of adamantan-2-one by running the reaction at room temperature, 65 and $100^{\circ} \mathrm{C}$ for 24 h . The yields of the desired spiroannelated product were compared. It was found that instead of containing three components (as in the case of room temperature reaction), products of the higher temperature reactions, 65 and $100^{\circ} \mathrm{C}$, contained (at least) six components, with the major spiro annelated product decreasing with increasing reaction temperature. The yields of the product 11 at various reaction temperatures were room temperature, $82 \%, 65^{\circ} \mathrm{C},<86 \%$, and $100^{\circ} \mathrm{C},<46 \%$. In the latter two runs, the yields represent the sums of two inseparable products.
(2) Cyclopropylidene Method. 2-Cyclopropylideneadamantane (12). In a nitrogen-purged $100-\mathrm{mL}$ two-neck round-bottom flask fitted with a mechanical stirrer was placed cyclopropyltriphenylphosphonium bromide (Aldrich) $(4.40 \mathrm{~g}, 11.5 \mathrm{mmol})$ in 40 mL of THF (dried over molecular sieves); then, 6 mL of 1.6 M solution of phenyllithium (Alfa) in $70: 30 \mathrm{v} / \mathrm{v}$ benzene-ether was injected into the suspension during a 10 -min period by using a syringe. The mixture became red-brown as the salt dissolved gradually. It was stirred for 1 h and heated at reflux for 20 min . To the red-brown solution was added dropwise over a period of 15 \min to a solution of adamantan-2-one ($1.60 \mathrm{~g}, 11.3 \mathrm{mmol}$) in 8 mL of THF. The mixture turned somewhat cloudy after the addition, and after 10 min it was warmed to $50^{\circ} \mathrm{C}$ and stirred for 48 h .

After the THF was evaporated at reduced pressure, a thick brown liquid was obtained. The liquid was dissolved in benzene and purified by silica gel column chromatography using benzene. The first four fractions were collected, and their purities were checked by TLC on silica gel using benzene. TLC showed that only the first fraction was pure 2 -cyclopropylideneadamantane ($R_{f}=0.61$). The fourth fraction ($R_{f}=$ 0.44) did not contain the desired product (12) and was discarded. On standing, the first fraction crystallized as a white solid. The second and third fractions, which remained liquid (slightly yellow), were combined and again chromatographed on a silica gel column using hexane solvent. The first five fractions contained pure 2-cyclopropylideneadamantane (R_{f} $=0.56$ in hexane), $\mathrm{mp} 58-59^{\circ} \mathrm{C}$. The combined yield of the pure product (12) was $1.70 \mathrm{~g}(82 \%)$: MS, $m / z 174.1413\left[\mathrm{M}^{+}\right.$, calcd for $\mathrm{C}_{13} \mathrm{H}_{18}, 174.1408 \mathrm{]}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.98$ (s, 4 H , cyclopropyl).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18}: \mathrm{C}, 89.59 ; \mathrm{H}, 10.41$. Found: C, 89.30; H , 10.61.

Epoxidation and Rearrangement of 2-Cyclopropylideneadamantane (12). Into a $100-\mathrm{mL}$ three-neck round-bottom flask equipped with a condenser, thermometer, dropping funnel, and magnetic stirred was added a solution of m-chloroperbenzoic acid (85%, Aldrich) (520 mg , 2.55 mmol in 12 mL of CHCl_{3}. The solution was cooled to $10^{\circ} \mathrm{C}$, and a solution of cyclopropropylideneadamantane (12) ($404 \mathrm{mg}, 2.32 \mathrm{mmol}$) in 12 mL of CHCl_{3} was added dropwise through the dropping funnel, while keeping the solution temperature at $6-10^{\circ} \mathrm{C}$. The solution was allowed to warm up to room temperature during 2 h , and stirring was
continued for an additional 4 h . Although TLC showed a complete disappearance of the starting cyclopropylidene compound, the solution was allowed to stir overnight. No discoloration was observed throughout the reaction. The residual m-chloroperbenzoic acid was destroyed by shaking (twice) with 10% aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution. The CHCl_{3} was then washed 3 times with 5% aqueous NaHCO_{3}, water, and saturated aqueous NaCl and finally dried $\left(\mathrm{MgSO}_{4}\right)$. TLC showed that the product was nearly pure spiroannelated adamantan-2-one (11) ($R_{f}=0.28$) with a small amount of m-chlorobenzoic acid at low R_{f} value. Chromatographic separation gave $437 \mathrm{mg}, 99 \%$ yield, of 11 .
$(-)$-syn- $\left(\mathbf{1}^{\prime} R\right)$-Spiro[cyclobutan- 2 -one- $1, \mathbf{2}^{\prime}$-($\mathbf{4}^{\prime}(\mathbf{a})$-methyladamantane $\left.)\right]$ (1). (-)-($1 R, 3 S$)-4(R)(a)-Methyladamantan-2-one (3) ($348 \mathrm{mg}, 2.12$ $\mathrm{mmol}, 100 \%$ ee), cyclopropyldiphenylsulfonium tetrafluoroborate ${ }^{25 \mathrm{~b}}$ (900 $\mathrm{mg}, 2.82 \mathrm{mmol})$, and powdered $\mathrm{KOH}(400 \mathrm{mg}, 7.45 \mathrm{mmol})$ were added to 8 mL of purified, anhydrous $\mathrm{Me}_{2} \mathrm{SO}$ in a $50-\mathrm{mL}$ round-bottom flask equipped with a condenser. The condenser was stoppered, and the mixture was stirred at room temperature for 5 days. It was worked up with 10 mL of fluoroboric acid followed by ether extraction as described previously. TLC on silica gel using benzene showed three major spots corresponding to diphenyl sulfide ($R_{f}=0.66$), the spiro ketone 1 ($R_{f}=$ 0.34), and the unreacted starting (-)-4(a)-methyladamantan-2-one (R_{f} $=0.11$). The products were separated by using eight silica gel preparative TLC plates (1.0 mm). Only the bands centered at $R_{f}=0.43$ and 0.19 corresponding to the desired spiro ketone 1 and starting $(-)-4(\mathrm{a})$ -methyladamantan-2-one were collected. The yield of the spiro ketone was $125 \mathrm{mg}(29 \%)$. One hundred and ninety milligrams of unreacted $(-)-(1 R)-4(\mathrm{a})$-methyladamantan- 2 -one was recovered. The desired spiro ketone 1 , oil, was $>99 \%$ pure by analytical GC: $[\alpha]^{25}{ }_{589}-16.61^{\circ},[\alpha]^{25}{ }_{578}$ $-17.02^{\circ},[\alpha]_{436}^{25}-31.38^{\circ},[\alpha]_{365}^{25}-47.17^{\circ}$ (c0.40); UV (M1) $\epsilon_{299}^{\max }=22$; UV (EPA) $\epsilon_{300}^{\max }=26 ; \mathrm{CD}$ (isopentane) $\Delta \epsilon_{312}^{\max }=-0.15,{ }^{42} \Delta \epsilon_{183}^{\max }=+3.49$; CD (M1) $\Delta \epsilon_{265} 0, \Delta \epsilon_{250}=-0.02, \Delta \epsilon_{310}=-0.12, \Delta \epsilon_{320}=-0.093, \Delta \epsilon_{338}=$ $0 ; \mathrm{CD}(\mathrm{EPA}) \Delta \epsilon_{260}=0, \Delta \epsilon_{307}=-0.193, \Delta \epsilon_{310}=-0.199, \Delta \epsilon_{340}=0(\mathrm{CD}$ runs at room temperature); $1 \mathrm{R}\left(\mathrm{CCl}_{4}\right) \nu 1768 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR, $\delta 1.10$ (d, $\left.3 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{CH}_{3}\right),\left(2.70-3.20 \mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CO}\right) ; \mathrm{MS}, m / z 24.1515$ [$\left.\mathrm{M}^{+}, \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}, 204.1514\right]$.
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 82.30 ; \mathrm{H}, 9.87$. Found: $\mathrm{C}, 81.96 ; \mathrm{H}$, 9.70.
anti-($\mathbf{1}^{\prime} R$)-Spiro[cyclobutan-2-one-1, $\mathbf{2}^{\prime}$-($\mathbf{4}^{\prime}($ a $)$-adamantane)] (2). ${ }^{19}$ The same procedure was used as that for the preparation of 2 -cyclopropylideneadamantane (12). (-)-(1R,3S)-4(R)(a)-Methyl-2-cycloproplideneadamantane (13). The phosphorus ylide was generated from the reaction of a suspension of cyclopropyltriphenylphosphonium bromide $(1.50 \mathrm{~g}, 2.93 \mathrm{mmol})$ in 15 mL of THF with 2.0 mL of a 1.6 M phenyllithium solution in 70:30 v / v benzene-ether. To this red-brown ylide solution was added dropwise a solution of $(-)-4($ a $)$-methyladamantan2 -one (3) ($613 \mathrm{mg}, 3.74 \mathrm{mmol}, 100 \%$ ee) in 5 mL of THF, and the mixture was stirred at $55^{\circ} \mathrm{C}$ for 2 days. The dark-brown, thick liquid which was obtained after evaporation of the THF, was dissolved in benzene, and was purified by column chromatography on silica gel using hexane. The yield of pure product 13 was 468 mg , (67%); ${ }^{1} \mathrm{H}$ NMR δ 0.85 (d, $3 \mathrm{H}, \mathrm{CH}_{3}$) and 0.9-1.11 ($\mathrm{m}, 4 \mathrm{H}$, cyclopropyl); MS, m / z $188.1578\left[\mathrm{M}^{+} ; \mathrm{C}_{14} \mathrm{H}_{20}, 188.1565\right]$. It was used directly in the next step.
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20}$: C, 89.29; $\mathrm{H}, 10.71$. Found: C, 89.20; H , 11.06.

Epoxidation of ($1 R, 3 S$)-2-Cyclopropylidene-4(R)(a)-methyladamantane (13). A solution of m-chloroperbenzoic acid (85% pure, Aldrich) ($372 \mathrm{mg}, 2.15 \mathrm{mmol}$) in 12 mL of CHCl_{3} was cooled to $10^{\circ} \mathrm{C}$ (with ice water) in a $50-\mathrm{mL}$ three-neck flask equipped with a condenser, a thermometer, dropping funnel, and a magnetic stirrer. $(1 R, 3 S)-2-$ Cyclopropylidene-4 (R)(a)-methyladamantane (13) ($369 \mathrm{mg}, 1.96 \mathrm{mmol}$) from above in 12 mL of CHCl_{3} was added dropwise from the funnel while controlling the mixture temperature at $10^{\circ} \mathrm{C}$. The mixture was then allowed to stir for 24 h at room temperature, after which time TLC showed complete disappearance of the starting material (13). Two $25-$ mL portions of 10% aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution were used to destroy the residual peracid. The layers were separated. The organic layer was washed 3 times with 5% aqueous NaHCO_{3} solution, water, and saturated aqueous NaCl and dried $\left(\mathrm{MgSO}_{4}\right)$. After evaporation of the solvent, a white solid was obtained which exhibited one major spot on TLC (benzene eluent) at the same R_{f} as $\mathbf{1}$. Small amounts of impurities with lower R_{f} values, including m-chlorobenzoic acid, accompanied the major spot. The spiro ketone was purified by silica gel column chromatography using hexane to give a white solid, after evaporation of the solvent, 365 $\mathrm{mg}, 91 \%$. The spiro ketone, although it showed only one spot on TLC, was a mixture of the syn (1) and anti (2) isomers as judged from the ${ }^{1} \mathrm{H}$ NMR spectrum. Two methyl doublets, $\delta 1.10$ (1) and 1.07 (2) ($J=8$ Hz), were found in CDCl_{3} solvent in the $100-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum. The ratio of the two spiro ketone isomers $(\mathbf{1} / \mathbf{2})$ was $26: 74$, as determined
(42) The CD data for 1 in ref 19 are scaled a factor of 10 too large.
by ${ }^{1} \mathrm{H}$ NMR or analytical GC . The melting point of the mixture showed softening at ca. $50^{\circ} \mathrm{C}$ with complete melting at $110^{\circ} \mathrm{C}$. The anti isomer 2 was completely separated from the syn isomer $\mathbf{1}$ by slow and repeated fractional sublimation at atmospheric pressure at $55^{\circ} \mathrm{C}$ or by preparative GC. Thus, the more volatile syn isomer 1 was removed by sublimation to leave the less volatile anti isomer 2 behind as a white solid, mp $118-121^{\circ} \mathrm{C}$ (racemate $\mathrm{mp} 120-122^{\circ} \mathrm{C}$), after crystallization from methanol-water. Ketone 2 had the following: $[\alpha]^{25}{ }_{589} 0^{\circ},[\alpha]^{25}{ }_{578} 0^{\circ}$, $[\alpha]^{25}{ }_{436}+23.92^{\circ},[\alpha]^{25}{ }_{365}+55.55^{\circ}(c \quad 0.35)$; UV (M1) $\epsilon_{300}^{\max }=21$; UV (EPA $\epsilon_{299}^{\max }=29$; CD (isopentane) $\Delta \epsilon_{314}^{\max }=-0.07, \epsilon_{188}^{\max }=+3.4 ; \mathrm{CD}$ (M1) $\Delta \epsilon_{270}=0, \Delta \epsilon_{306}=-0.034, \Delta \epsilon_{320}=-0.056, \Delta \epsilon_{332}=-0.046, \Delta \epsilon_{339}=0 ; \mathrm{CD}$ (EPA) $\Delta \epsilon_{262}=0, \Delta \epsilon_{302}=+0.045, \Delta \epsilon_{312}=+0.040, \Delta \epsilon_{324}=+0.007, \Delta \epsilon_{327}$ $=0, \Delta \epsilon_{332}=-0.023, \Delta \epsilon_{338}=0(\mathrm{CD}$ run at room temperature $) ;$ IR $\left(\mathrm{CCl}_{4}\right)$ $\nu 1770 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\delta 1.07\left(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ and $2.72-3.12$ (m, $2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CO}$); MS, $m / z 204.1515$ [$\mathrm{M}^{+} \cdot ; \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}, 204.1514$].
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 82.30 ; \mathrm{H}, 9.87$. Found $\mathrm{C}, 82.25 ; \mathrm{H}$, 9.78.
syn-(1'S)-Spiro[cyclobutan-2-one-1,7'-(2'-exo-methylnorbornane)] (14). ${ }^{20}$ A solution of diphenylcyclopropylsulfonium tetrafluoroborate ${ }^{25 b}$ ($350 \mathrm{mg}, 1.11 \mathrm{mmol}$), 3 KOH pellets (crushed), and 10 mL of dry $\mathrm{Me}_{2} \mathrm{SO}$ were reacted with 124 mg of ($1 S, 4 R$)-exo- $2(R)$-methylbicyclo[2.2.1] heptan-7-one (15), ${ }^{3 \mathrm{~b}}[\alpha]_{\mathrm{D}}-11^{\circ}(c 0.7), 42 \% \mathrm{ee}$, in a sealed tube for 3 days (with days 1 and 3 at room temperature and day 2 at $48^{\circ} \mathrm{C}$. The reaction was quenched by addition of excess dilute (1:1) hydrochloric acid, poured into 200 mL of cold water, and extracted with petroleum
ether ($3 \times 30 \mathrm{~mL}$). The organic extracts were washed several times with water, dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated to about 5 mL , and passed through 15 g of neutral alumina (Activity II). The desired sweet smelling product eluted with petroleum ether, following elution of diphenyl sulfide, and the combined fractions gave $45 \mathrm{mg}(26 \%)$ of a colorless oil. It contained about 15% of an impurity which was removed by repeated preparative GC. The colorless oily ketone 14 ($>99 \%$ pure) had the following: UV (isopentane) $\epsilon_{306}^{\max }=29 ; C D$ (isopentane) $\Delta \epsilon_{310}^{\max }=0.91, \Delta \epsilon_{190}^{\max }=1.17$ (corrected to 100% ee); 1R (film) $\nu 1770,1460,1275,1255,1100$, and $1065 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.04\left(\mathrm{~d}, 3 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.10-1.70(\mathrm{~m}, 9$ H), $1.83\left(\mathrm{t}, 2 \mathrm{H}, J=8 \mathrm{~Hz}\right.$, cyclobutanone $\left.\mathrm{CH}_{2}\right), 2.80(\mathrm{t}, 2 \mathrm{H}, J=8 \mathrm{~Hz}$, cyclobutanone $\mathrm{COCH}_{2}-$); ${ }^{1} \mathrm{H}$ NMR (benzene- d_{6}) $\delta 1.22(\mathrm{~d}, 3 \mathrm{H}, J=6$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 2.42\left(\mathrm{t}, 2 \mathrm{H}, J=8 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CO}\right) ; \mathrm{MS}, m / z 164.1206\left[\mathrm{M}^{+}\right.$. $\left.\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}, 164.1201\right]$. Addition of $\mathrm{Eu}(\text { thd })_{3}$ to the CDCl_{3} solution gave the following: ${ }^{1} \mathrm{H}$ NMR shifts $\delta 1.68\left(\mathrm{~d}, 3 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.50(\mathrm{t}$, $\left.2 \mathrm{H}, J=8 \mathrm{~Hz}, \alpha-\mathrm{CH}_{2}-\right)$, and $2.28\left(\mathrm{t}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, \beta=\mathrm{CH}_{2}-\right)$ with $\Delta \delta\left(\mathrm{CH}_{3}\right)=65 \mathrm{~Hz}, \Delta \delta\left(\alpha-\mathrm{CH}_{2}\right)=70 \mathrm{~Hz}$, and $\Delta \epsilon\left(\alpha-\mathrm{CH}_{2}-\right)=45 \mathrm{~Hz}$.

Anal. Caled for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 80.44 ; \mathrm{H}, 9.82$. Found: $\mathrm{C}, 80.59 ; \mathrm{H}$, 9.51 .

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this work and the National Science Foundation (CHE828216) for generous support of this work. We also thank Dr. S. L. Rodgers for preliminary studies with MM2 calculations.

[3.3]Metacyclophane: A Novel Synthesis and a Study of the Structure through X-ray Diffraction, Molecular Mechanics, and Solution NMR Analysis

M. F. Semmelhack, ${ }^{*+, \ddagger}$ J. J. Harrison, ${ }^{*+, \perp}$ D. C. Young, ${ }^{\perp}$ A. Gutiêrrez, ${ }^{\ddagger}$ Shahin Rafii, ${ }^{\dagger}$ and Jon Clardy ${ }^{\dagger}$

Contribution from the Department of Chemistry, Cornell University, Ithaca, New York 14852, the Department of Chemistry, Princeton University, Princeton, New Jersey 08544, and the Gulf Research and Development Company, Pittsburgh, Pennsylvania 15116. Received June 28, 1985

Abstract

Coordination of 3-phenylpropionitrile with chromium hexacarbonyl followed by treatment of the resulting arenechromium complex with lithium diisopropylamide and then iodine produced 1,12-dicyano[3.3]metacyclophane in a remarkable 84% yield. The process involves intermolecular nucleophilic addition to the coordinated arene, followed by cyclization of the dimer; iodine completes the addition/oxidation procedure for nucleophilic aromatic substitution for hydrogen. Reductive cleavage of the cyano groups produces the parent hydrocarbon, [3.3]metacyclophane. In the crystals, the molecule assumes a syn geometry with the bridging chains in a chair-chair conformation; however, the arene rings are tilted with respect to one another and slightly twisted. Molecular mechanics calculations find the same conformer as the energy minimum, with a similar tilt of the arene rings, but perfect $C_{2 v}$ symmetry (no twist). Two other conformations, syn(chair-boat) and syn(boat-boat), are within $1-2 \mathrm{kcal} / \mathrm{mol}$ of the lowest energy structure, while all conformers with the anti geometry are more than $6 \mathrm{kcal} / \mathrm{mol}$ higher. In solution, dynamic behavior is observed by variable-temperature ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopy, attributed to interconversion of two syn conformers via a chair-boat motion of one of the three-carbon bridges. The barrier to isomerization is found to be $10-11 \mathrm{kcal} / \mathrm{mol}$ from both ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data sets.

Considerable interest has existed in synthesizing and studying the properties of a class of compounds known as cyclophanes. ${ }^{1}$ Of particular interest have been the [m.n]metacyclophanes because, in general, two different conformations, syn and anti, can exist (Figure 1). The terms synclinal and anticlinal have recently been used to describe the geometry for higher cyclophanes $n \geqslant$ $4 .{ }^{2}$

In the parent [2.2]metacyclophane (1), the anti geometry is observed exclusively. The upfield shift of the aromatic proton H_{i} in $\mathbf{1}$ ($\delta 4.17$) is a useful probe for the assignment of the anti geometry since H_{i} is constrained to lie directly over the π-electron cloud of the aromatic ring. ${ }^{3}$ Syn geometries as typified by

[^7]2,11-dithia[3.3]metacyclophane (2) have H_{i} positioned downfield, in the usual range for arene hydrogens (e.g., $\delta 6.82$ for 2). ${ }^{4}$ The NMR chemical shift criterion is useful for assigning geometries

[^8]
[^0]: (1) For Part 16, see: Lightner, D. A.; Pak, C. S.; Crist, B. V.; Rodgers, S. L.; Givens, J. W., III Telrahedron, in press.
 (2) (a) Moffitt, W.; Woodward, R. B.; Moscowitz, A.; Klyne, W.; Djerassi, C. J. Am. Chem. Soc. 1961, 83, 4013-4018. (b) The octant rule was given earlier in: Djerassi, C. "Optical Rotatory Dispersion"; McGraw-Hill: New York, 1961; Chapter 13. (c) For leading references, see: Deutsche, C. W.; Lightner, D. A.; Woody, R. W.; Moscowitz, A. Annu. Rev. Phys. Chem. 1966, 20, 407-448.
 (3) (a) Bouman, T. D.; Lightner, D. A. J. Am. Chem. Soc. 1976, 98 , 3145-3154. (b) Lightner, D. A.; Crist, B. V.; Kalyanam, N.; May, L. M.; Jackman, D. E. J. Org. Chem. 1985, 50, 3867-3878.
 (4) Moffitt, W.; Moscowitz, A. Abstrs. Pap.-Am. Chem. Soc. 1958, 133 rd , abstract No. 1 .

[^1]: (9) Lightner, D. A.; Christiansen, G. D. Tetrahedron Letl. 1972, 883-886. (10) (a) Schellman, J. A. J. Chem. Phys. 1966, 44, 55-63. (b) Schellman, J. A. Accounts Chem. Res. 1968, 1, 144-151. (c) Wagniēre, G. J. Am. Chem. Soc. 1966, 88, 3937-3940.
 (11) Bouman, T. D.; Moscowitz, A. J. Chem. Phys. 1968, 48, 3115-3120.
 (12) Coulombeau, C.; Rassat, A. Bull. Soc. Chim. Fr, 1971, 71, 516-526.
 (13) Pao, Y. H.; Santry, D. P. J. Am. Chem. Soc. 1966, 88, 4157-4163.
 (14) Moscowitz, A. Adv. Chem. Phys. 1962, 4, 67-112. See also ref 11 .
 (15) The 3-axial methyl configuration of chair cyclohexanone was not included in the original theoretical derivation of the octant rule: Moscowitz, A., personal communication. See also ref 14 .
 (16) Gould, R. R.; Hoffmann, R. J. Am. Chem. Soc. 1970, 92, 1813-1818.
 (17) (a) Snatzke, G.; Eckhardt, G. Tetrahedron 1968, 24, 4543-4558. (b) Snatzke, G.; Ehrig, B.; Klein, Tetrahedron 1969, 25, 5601-5609 and references therein. (c) Snatzke, G.; Eckhardt, G. Tetrahedron 1970, 26, 1143-1155. (d) Snatzke, G.; Marquarding, D. Chem. Ber. 1967, 100, 1710-1724.
 (18) However, ketone 3 has recently been shown to give moderately strong $(+)$ CEs at low temperatures in methylcyclohexane-isopentane, $4: 1, \mathrm{v} / \mathrm{v}$, and ether-isopentane-ethanol, 5:5:2, v/v/v. Lightner, D. A.; Wijekoon, W. M. D. J. Org. Chem. 1982, 47, 306-310.
 (19) Lightner, D. A.; Chang, T. C. J. Am. Chem. Soc. 1974, 96, 3015-3016.
 (20) Lightner, D. A.; Jackman, D. E. J. Chem. Soc., Chem. Commun. 1974, 344-345.

[^2]: (21) Meerwein, H.; Schürmann, W. Liebigs Ann. Chem. 1913, 398, 196-242.
 (22) Radcliffe, M. D.; Gutierrez, A.; Blount, J. F.; Mislow, K. J. Am. Chem. Soc. 1984, 106, 682-687.
 (23) (a) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543-2549. (b) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95 , 512-519.

[^3]: (24) Kalyanam, N.; Lightner, D. A. Tetrahedron Lell. 1979, 415-418 and references therein.
 (25) (a) Trost, B. M.; Bogdanowicz, M. A. J. Am. Chem. Soc. 1973, 95, 5321-5334. (b) Trost, B. M.; Bogdanowicz, M. A. J. Am. Chem. Soc. 1973, 95, 5298-5307. (c) Spiroannelation of the stereochemically related 14β -methyl-1,2,3,4,5,6-hexahydrophenanthren-4-one using diphenylsulfonium cyclopropylide gave a $93: 7$ ratio of syn/anti ketones using HBF_{4} to catalyze the rearrangement of the isolated oxaspiropentane intermediate. The stereochemical assignments of the spiro ketones were made by LIS-NMR: the syn- CH_{3} showed a greater downfield shift with added $\mathrm{Eu}(\mathrm{III})$ shift reagent than did the anti- CH_{3} (ref 25a).
 (26) For another example of steric hindrance in rehybridization, see: Lightner, D. A.; Wijekoon, W. M. D.; Crist, B. V. Spectrosc.: An. Intl. J. 1983, 2, 255-259.

[^4]: (34) As noted for (R)-2-methylcyclobutanone, the UV $\lambda_{\max }(293 \mathrm{~nm})$ is normal ($\lambda_{\max } 22.1$), whereas, the CD CE is markedly red-shifted, $\lambda_{\max } 306$ $\mathrm{nm}, \lambda_{\text {max }}-0.2$ (64% ee). See: van Leusen, D.; Rouwette, P. H. F. M.; Van Leusen, A. M. J. Org. Chem. 1981, 46, 51 59-5163.

[^5]: ${ }^{a}$ Reduced rotatory strength $[R]^{T}=$ rotatory strength, $R, 1.08 \times 10^{40}$. Superscripted numbers are temperature (${ }^{\circ} \mathrm{C}$). Data are corrected for

[^6]: (35) Lightner, D. A.; Bouman, T. D.; Wijekoon, W. M. D.; Hansen, Aa. E. J. Am. Chem. Soc. 1984, 106, 934-944.
 (36) Moscowitz, A.; Wellman, K. M.; Djerassi, C. Proc. Natl. Acad. Sci. U.S.A. 1963, 50, 799, 804.
 (37) Coulombeau, C.; Rassat, A. Bull. Soc. Chim. Fr. 1963, 2673-2674.

[^7]: ${ }^{\dagger}$ Cornell University.
 ${ }^{2}$ Princeton University
 ${ }^{\perp}$ Gulf Research and Development.

[^8]: (1) (a) Keehn, P. M.; Rosenfeld, S. M., Ed. "Cyclophanes, Organic Chemistry A Series of Monographs"; Academic Press: New York, 1983; Volume 45, Parts 1 and 2. (b) Vögtle, F., Ed. "Cyclophanes I, Topics in Current Chemistry"; Springer-Verlag: New York, 1983; Vol. 113. (c) Smith, B. M. In "Bridged Aromatic Compounds"; Academic Press: New York, 1964. (d) Misumi, S.; Otsubo, T. Acc. Chem. Res. 1978, 11, 251. (e) Vögtle, F.; Höhner, G. Top. Current Chem. 1978, 74, 1.
 (2) Beveridge, K. A.; Bushnell, G. W.; Mitchell, R. H. Can. J. Chem. 1983, 61, 1603-7.
 (3) (a) Wilson, D. J.; Boekelheide, V.; Griffin, R. W., Jr. J. Am. Chem. Soc. 1960, 82, 6302-6304. (b) Sato, T.; Akabori, S.; Kainosho, M.; Hata, K. Bull. Chem. Soc. Jpn. 1968, 41, 218-221.
 (4) Anker, W.; Bushnell, G. W.; Mitchell, R. H. Can. J. Chem. 1979, 57, 3080-3087.

